diff --git a/python/dune/perftool/sumfact/vectorization.py b/python/dune/perftool/sumfact/vectorization.py index d9ca54c855a9bd304fcc9c7f81ccb26392fa9cff..3635b5b26bd6f6df08e952d435ed52f304695587 100644 --- a/python/dune/perftool/sumfact/vectorization.py +++ b/python/dune/perftool/sumfact/vectorization.py @@ -271,8 +271,7 @@ def level1_optimal_vectorization_strategy(sumfacts, width): print("The score in 'target' logic was: {}".format(strategy_cost((qp, optimal_strategies[qp])))) # Print the employed vectorization strategy into a file - from os.path import join - filename = join(get_option("project_basedir"), "costmodel-verification", "targetstrat_{}.txt".format(int(float(get_form_option("vectorization_target"))))) + filename = "targetstrat_{}.txt".format(int(float(get_form_option("vectorization_target")))) with open(filename, 'w') as f: f.write("\n".join(stringify_vectorization_strategy((qp, optimal_strategies[qp])))) @@ -280,10 +279,9 @@ def level1_optimal_vectorization_strategy(sumfacts, width): from dune.testtools.parametertree.parser import parse_ini_file inifile = parse_ini_file(get_option("ini_file")) identifier = inifile["identifier"] - filename = join(get_option("project_basedir"), "costmodel-verification", "mapping.csv") # TODO: Depending on the number of samples, we might need a file lock here. - with open(filename, 'a') as f: + with open("mapping.csv", 'a') as f: f.write(" ".join((identifier, str(cost), short_stringify_vectorization_strategy((qp, optimal_strategies[qp])))) + "\n") return qp, optimal_strategies[qp]