From 6ac7229293fd424c05fcb7cfb8776b4fdc87e454 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ren=C3=A9=20He=C3=9F?= <rene.hess@iwr.uni-heidelberg.de> Date: Wed, 29 Mar 2017 14:45:29 +0200 Subject: [PATCH] Cut split_into_accumulation_terms in two parts --- .../ufl/extract_accumulation_terms.py | 223 +++++++++--------- 1 file changed, 114 insertions(+), 109 deletions(-) diff --git a/python/dune/perftool/ufl/extract_accumulation_terms.py b/python/dune/perftool/ufl/extract_accumulation_terms.py index 15aef688..29ee9e78 100644 --- a/python/dune/perftool/ufl/extract_accumulation_terms.py +++ b/python/dune/perftool/ufl/extract_accumulation_terms.py @@ -36,29 +36,25 @@ class AccumulationTerm(Record): @ufl_transformation(name="accterms", extraction_lambda=lambda l: [at.term for at in l]) def split_into_accumulation_terms(expr): - """Split an UFL expression into several accumulation parts and return a list + expression_list = split_expression(expr) + acc_term_list = [] + for e in expression_list: + acc_term_list.append(cut_accumulation_term(e)) - For a residual evaluation we split for different test functions - and according to the restriction (sefl/neighbor at skeletons). For - the jacobians we also need to split according to the ansatz - functions (and their restriction). + return acc_term_list - Note: This function is not an UFL transformation. Nonetheless it - has the @ufl_transformation decorator for debugging purposes. - Arguments: - ---------- - expr: UFL expression we want to split - """ +def split_expression(expr): + # TODO: doc me # Store AccumulationTerms in this list ret = [] - # Extract a list of modified terminals for the test function - # One accumulation instruction will be generated for each of these. + # Extract a list of modified terminals for the test function. We + # will split the expression into one part for each moidified argument. test_args = extract_modified_arguments(expr, argnumber=0, do_index=False) - # Extract a list of modified terminals for the ansatz function - # in jacobian forms. + # Extract a list of modified terminals for the ansatz function in + # jacobian forms. all_jacobian_args = extract_modified_arguments(expr, argnumber=1, do_index=False) for test_arg in test_args: @@ -77,94 +73,7 @@ def split_into_accumulation_terms(expr): # 2) Propagate indexed zeros to simplify expression replace_expr = zero_propagation(replace_expr) - # 3) Cut the test function itself from the expression - # - # This is done by replacing the test function with an - # appropriate product of identity matrices. This way we can - # make sure that the indices of the result will be right. This - # is best explained by an example: - # - # Suppose we have the following expression: - # - # \sum_{i,j} a_{i,j} (\nabla v)_{i,j} + \sum_{k,l} b_{k,l} (\nable v)_{k,l} - # - # If we want to cut the gradient of the test function v we - # need to make sure, that both sums have the right indices: - # - # \sum_{m,n} (a_{m,n} + b_{m,n}) (\nabla v)_{m,n} - # - # and we extract (a_{m,n} + b_{m,n}). We achieve that by the - # following replacements: - # - # (\nabla v)_{i,j} -> I_{m,i} I_{n,j} - # (\nabla v)_{k,l} -> I_{m,k} I_{n,l} - # - # Resulting in: - # - # \sum_{i,j} a_{i,j} I_{m,i} I_{n,j} + \sum_{k,l} b_{k,l} I_{m,k} I_{n,l} - # - # In step 4 this will collaps to: a_{m,n} + b_{m,n} - replacement = {} - indexmap = {} - newi = None - backmap = {} - # Get all appearances of test functions with their indices - indexed_test_args = extract_modified_arguments(replace_expr, argnumber=0, do_index=True) - for indexed_test_arg in indexed_test_args: - if indexed_test_arg.index: - # If the test function is indexed, create a new multiindex of this shape - # -> (m,n) in the example above - if newi is None: - newi = indices(len(indexed_test_arg.index)) - - # This handles the special case with two identical - # indices on an test function. E.g. in Stokes on an - # axiparallel grid you get a term: - # - # -(\sum_i K_{i,i} (\nabla v)_{i,i}) w - # = \sum_k \sum_l (-K_{k,k} w I_{k,l} (\nabla v)_{k,l}) - # - # and we want to split - # - # -K_{k,k} w I_{k,l} corresponding to (\nabla v)_{k,l}. - # - # This is done by: - # - Replacing (\nabla v)_{i,i} with I_{k,i}*(\nabla - # v)_{k,l}. Here (\nabla v)_{k,l} serves as a - # placeholder and will be replaced later on. - # - Propagating the identity in step 4. - # - Replacing (\nabla v)_{k,l} by I_{k,l} after step 4. - if len(set(indexed_test_arg.index._indices)) < len(indexed_test_arg.index._indices): - if len(indexed_test_arg.index._indices) > 2: - raise NotImplementedError("Test argument with more than three indices and double occurence ist not implemented.") - mod_index_map = {indexed_test_arg.index: MultiIndex((newi[0], newi[1]))} - mod_indexed_test_arg = replace_expression(indexed_test_arg.expr, - replacemap=mod_index_map) - rep = Product(Indexed(Identity(2), - MultiIndex((newi[0], indexed_test_arg.index[0]))), - mod_indexed_test_arg) - backmap.update({mod_indexed_test_arg: - Indexed(Identity(2), MultiIndex((newi[0], newi[1])))}) - replacement.update({indexed_test_arg.expr: rep}) - indexmap.update({indexed_test_arg.index[0]: newi[0]}) - else: - # Replace indexed test function with a product of identities. - identities = tuple(Indexed(Identity(2), MultiIndex((i,) + (j,))) - for i, j in zip(newi, indexed_test_arg.index._indices)) - replacement.update({indexed_test_arg.expr: - construct_binary_operator(identities, Product)}) - - indexmap.update({i: j for i, j in zip(indexed_test_arg.index._indices, newi)}) - else: - replacement.update({indexed_test_arg.expr: IntValue(1)}) - replace_expr = replace_expression(replace_expr, replacemap=replacement) - - # 4) Collapse any identity nodes that may have been introduced - # by replacing vectors and maybe replace placeholder from last step - replace_expr = identity_propagation(replace_expr) - replace_expr = replace_expression(replace_expr, replacemap=backmap) - - # 5) Further split according to trial function in jacobian terms + # 3) Further split according to trial function in jacobian terms # # Note: We need to split according to the FunctionView. For # example in Stokes with test functions v and q we have to @@ -179,7 +88,7 @@ def split_into_accumulation_terms(expr): do_index=False, do_gradient=False) for trial_arg in trial_args: - # 5.1) Restrict to this trial argument + # 3.1) Restrict to this trial argument replacement = {ma.expr: Zero(shape=ma.expr.ufl_shape, free_indices=ma.expr.ufl_free_indices, index_dimensions=ma.expr.ufl_index_dimensions) @@ -187,10 +96,10 @@ def split_into_accumulation_terms(expr): replacement[trial_arg.expr] = trial_arg.expr jac_expr = replace_expression(replace_expr, replacemap=replacement) - # 5.2) Propagate indexed zeros to simplify expression + # 3.2) Propagate indexed zeros to simplify expression jac_expr = zero_propagation(jac_expr) - # 5.3) Accumulate according to restriction + # 3.3) Split according to restriction indexed_jac_args = extract_modified_arguments(jac_expr, argnumber=1, do_index=True) for restriction in (Restriction.NONE, Restriction.POSITIVE, Restriction.NEGATIVE): replacement = {ma.expr: Zero(shape=ma.expr.ufl_shape, @@ -201,10 +110,106 @@ def split_into_accumulation_terms(expr): acc_expr = replace_expression(jac_expr, replacemap=replacement) - if not isinstance(jac_expr, Zero): - ret.append(AccumulationTerm(acc_expr, test_arg, indexmap, newi)) + if not isinstance(acc_expr, Zero): + ret.append(acc_expr) else: if not isinstance(replace_expr, Zero): - ret.append(AccumulationTerm(replace_expr, test_arg, indexmap, newi)) + ret.append(replace_expr) return ret + + +def cut_accumulation_term(expr): + # TODO: doc me + test_args = extract_modified_arguments(expr, argnumber=0, do_index=False) + assert len(test_args) == 1 + test_arg = test_args[0] + + # 1) Cut the test function itself from the expression + # + # This is done by replacing the test function with an + # appropriate product of identity matrices. This way we can + # make sure that the indices of the result will be right. This + # is best explained by an example: + # + # Suppose we have the following expression: + # + # \sum_{i,j} a_{i,j} (\nabla v)_{i,j} + \sum_{k,l} b_{k,l} (\nable v)_{k,l} + # + # If we want to cut the gradient of the test function v we + # need to make sure, that both sums have the right indices: + # + # \sum_{m,n} (a_{m,n} + b_{m,n}) (\nabla v)_{m,n} + # + # and we extract (a_{m,n} + b_{m,n}). We achieve that by the + # following replacements: + # + # (\nabla v)_{i,j} -> I_{m,i} I_{n,j} + # (\nabla v)_{k,l} -> I_{m,k} I_{n,l} + # + # Resulting in: + # + # \sum_{i,j} a_{i,j} I_{m,i} I_{n,j} + \sum_{k,l} b_{k,l} I_{m,k} I_{n,l} + # + # In step 2 this will collaps to: a_{m,n} + b_{m,n} + replacement = {} + indexmap = {} + newi = None + backmap = {} + # Get all appearances of test functions with their indices + indexed_test_args = extract_modified_arguments(expr, argnumber=0, do_index=True) + for indexed_test_arg in indexed_test_args: + if indexed_test_arg.index: + # If the test function is indexed, create a new multiindex of this shape + # -> (m,n) in the example above + if newi is None: + newi = indices(len(indexed_test_arg.index)) + + # This handles the special case with two identical + # indices on an test function. E.g. in Stokes on an + # axiparallel grid you get a term: + # + # -(\sum_i K_{i,i} (\nabla v)_{i,i}) w + # = \sum_k \sum_l (-K_{k,k} w I_{k,l} (\nabla v)_{k,l}) + # + # and we want to split + # + # -K_{k,k} w I_{k,l} corresponding to (\nabla v)_{k,l}. + # + # This is done by: + # - Replacing (\nabla v)_{i,i} with I_{k,i}*(\nabla + # v)_{k,l}. Here (\nabla v)_{k,l} serves as a + # placeholder and will be replaced later on. + # - Propagating the identity in step 4. + # - Replacing (\nabla v)_{k,l} by I_{k,l} after step 4. + if len(set(indexed_test_arg.index._indices)) < len(indexed_test_arg.index._indices): + if len(indexed_test_arg.index._indices) > 2: + raise NotImplementedError("Test argument with more than three indices and double occurence ist not implemented.") + mod_index_map = {indexed_test_arg.index: MultiIndex((newi[0], newi[1]))} + mod_indexed_test_arg = replace_expression(indexed_test_arg.expr, + replacemap=mod_index_map) + rep = Product(Indexed(Identity(2), + MultiIndex((newi[0], indexed_test_arg.index[0]))), + mod_indexed_test_arg) + backmap.update({mod_indexed_test_arg: + Indexed(Identity(2), MultiIndex((newi[0], newi[1])))}) + replacement.update({indexed_test_arg.expr: rep}) + indexmap.update({indexed_test_arg.index[0]: newi[0]}) + else: + # Replace indexed test function with a product of identities. + identities = tuple(Indexed(Identity(2), MultiIndex((i,) + (j,))) + for i, j in zip(newi, indexed_test_arg.index._indices)) + replacement.update({indexed_test_arg.expr: + construct_binary_operator(identities, Product)}) + + indexmap.update({i: j for i, j in zip(indexed_test_arg.index._indices, newi)}) + else: + replacement.update({indexed_test_arg.expr: IntValue(1)}) + expr = replace_expression(expr, replacemap=replacement) + + # 2) Collapse any identity nodes that may have been introduced + # by replacing vectors and maybe replace placeholder from last step + expr = identity_propagation(expr) + expr = replace_expression(expr, replacemap=backmap) + + return AccumulationTerm(expr, test_arg, indexmap, newi) -- GitLab