From 6ac7229293fd424c05fcb7cfb8776b4fdc87e454 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Ren=C3=A9=20He=C3=9F?= <rene.hess@iwr.uni-heidelberg.de>
Date: Wed, 29 Mar 2017 14:45:29 +0200
Subject: [PATCH] Cut split_into_accumulation_terms in two parts

---
 .../ufl/extract_accumulation_terms.py         | 223 +++++++++---------
 1 file changed, 114 insertions(+), 109 deletions(-)

diff --git a/python/dune/perftool/ufl/extract_accumulation_terms.py b/python/dune/perftool/ufl/extract_accumulation_terms.py
index 15aef688..29ee9e78 100644
--- a/python/dune/perftool/ufl/extract_accumulation_terms.py
+++ b/python/dune/perftool/ufl/extract_accumulation_terms.py
@@ -36,29 +36,25 @@ class AccumulationTerm(Record):
 
 @ufl_transformation(name="accterms", extraction_lambda=lambda l: [at.term for at in l])
 def split_into_accumulation_terms(expr):
-    """Split an UFL expression into several accumulation parts and return a list
+    expression_list = split_expression(expr)
+    acc_term_list = []
+    for e in expression_list:
+        acc_term_list.append(cut_accumulation_term(e))
 
-    For a residual evaluation we split for different test functions
-    and according to the restriction (sefl/neighbor at skeletons). For
-    the jacobians we also need to split according to the ansatz
-    functions (and their restriction).
+    return acc_term_list
 
-    Note: This function is not an UFL transformation. Nonetheless it
-    has the @ufl_transformation decorator for debugging purposes.
 
-    Arguments:
-    ----------
-    expr: UFL expression we want to split
-    """
+def split_expression(expr):
+    # TODO: doc me
     # Store AccumulationTerms in this list
     ret = []
 
-    # Extract a list of modified terminals for the test function
-    # One accumulation instruction will be generated for each of these.
+    # Extract a list of modified terminals for the test function. We
+    # will split the expression into one part for each moidified argument.
     test_args = extract_modified_arguments(expr, argnumber=0, do_index=False)
 
-    # Extract a list of modified terminals for the ansatz function
-    # in jacobian forms.
+    # Extract a list of modified terminals for the ansatz function in
+    # jacobian forms.
     all_jacobian_args = extract_modified_arguments(expr, argnumber=1, do_index=False)
 
     for test_arg in test_args:
@@ -77,94 +73,7 @@ def split_into_accumulation_terms(expr):
         # 2) Propagate indexed zeros to simplify expression
         replace_expr = zero_propagation(replace_expr)
 
-        # 3) Cut the test function itself from the expression
-        #
-        # This is done by replacing the test function with an
-        # appropriate product of identity matrices. This way we can
-        # make sure that the indices of the result will be right. This
-        # is best explained by an example:
-        #
-        # Suppose we have the following expression:
-        #
-        # \sum_{i,j} a_{i,j} (\nabla v)_{i,j} + \sum_{k,l} b_{k,l} (\nable v)_{k,l}
-        #
-        # If we want to cut the gradient of the test function v we
-        # need to make sure, that both sums have the right indices:
-        #
-        # \sum_{m,n} (a_{m,n} + b_{m,n}) (\nabla v)_{m,n}
-        #
-        # and we extract (a_{m,n} + b_{m,n}). We achieve that by the
-        # following replacements:
-        #
-        # (\nabla v)_{i,j} -> I_{m,i} I_{n,j}
-        # (\nabla v)_{k,l} -> I_{m,k} I_{n,l}
-        #
-        # Resulting in:
-        #
-        # \sum_{i,j} a_{i,j} I_{m,i} I_{n,j} + \sum_{k,l} b_{k,l} I_{m,k} I_{n,l}
-        #
-        # In step 4 this will collaps to: a_{m,n} + b_{m,n}
-        replacement = {}
-        indexmap = {}
-        newi = None
-        backmap = {}
-        # Get all appearances of test functions with their indices
-        indexed_test_args = extract_modified_arguments(replace_expr, argnumber=0, do_index=True)
-        for indexed_test_arg in indexed_test_args:
-            if indexed_test_arg.index:
-                # If the test function is indexed, create a new multiindex of this shape
-                # -> (m,n) in the example above
-                if newi is None:
-                    newi = indices(len(indexed_test_arg.index))
-
-                # This handles the special case with two identical
-                # indices on an test function. E.g. in Stokes on an
-                # axiparallel grid you get a term:
-                #
-                # -(\sum_i K_{i,i} (\nabla v)_{i,i}) w
-                #   = \sum_k \sum_l (-K_{k,k} w I_{k,l} (\nabla v)_{k,l})
-                #
-                # and we want to split
-                #
-                # -K_{k,k} w I_{k,l} corresponding to (\nabla v)_{k,l}.
-                #
-                # This is done by:
-                # - Replacing (\nabla v)_{i,i} with I_{k,i}*(\nabla
-                #   v)_{k,l}. Here (\nabla v)_{k,l} serves as a
-                #   placeholder and will be replaced later on.
-                # - Propagating the identity in step 4.
-                # - Replacing (\nabla v)_{k,l} by I_{k,l} after step 4.
-                if len(set(indexed_test_arg.index._indices)) < len(indexed_test_arg.index._indices):
-                    if len(indexed_test_arg.index._indices) > 2:
-                        raise NotImplementedError("Test argument with more than three indices and double occurence ist not implemented.")
-                    mod_index_map = {indexed_test_arg.index: MultiIndex((newi[0], newi[1]))}
-                    mod_indexed_test_arg = replace_expression(indexed_test_arg.expr,
-                                                              replacemap=mod_index_map)
-                    rep = Product(Indexed(Identity(2),
-                                          MultiIndex((newi[0], indexed_test_arg.index[0]))),
-                                  mod_indexed_test_arg)
-                    backmap.update({mod_indexed_test_arg:
-                                    Indexed(Identity(2), MultiIndex((newi[0], newi[1])))})
-                    replacement.update({indexed_test_arg.expr: rep})
-                    indexmap.update({indexed_test_arg.index[0]: newi[0]})
-                else:
-                    # Replace indexed test function with a product of identities.
-                    identities = tuple(Indexed(Identity(2), MultiIndex((i,) + (j,)))
-                                       for i, j in zip(newi, indexed_test_arg.index._indices))
-                    replacement.update({indexed_test_arg.expr:
-                                        construct_binary_operator(identities, Product)})
-
-                    indexmap.update({i: j for i, j in zip(indexed_test_arg.index._indices, newi)})
-            else:
-                replacement.update({indexed_test_arg.expr: IntValue(1)})
-        replace_expr = replace_expression(replace_expr, replacemap=replacement)
-
-        # 4) Collapse any identity nodes that may have been introduced
-        # by replacing vectors and maybe replace placeholder from last step
-        replace_expr = identity_propagation(replace_expr)
-        replace_expr = replace_expression(replace_expr, replacemap=backmap)
-
-        # 5) Further split according to trial function in jacobian terms
+        # 3) Further split according to trial function in jacobian terms
         #
         # Note: We need to split according to the FunctionView. For
         # example in Stokes with test functions v and q we have to
@@ -179,7 +88,7 @@ def split_into_accumulation_terms(expr):
                                                     do_index=False,
                                                     do_gradient=False)
             for trial_arg in trial_args:
-                # 5.1) Restrict to this trial argument
+                # 3.1) Restrict to this trial argument
                 replacement = {ma.expr: Zero(shape=ma.expr.ufl_shape,
                                              free_indices=ma.expr.ufl_free_indices,
                                              index_dimensions=ma.expr.ufl_index_dimensions)
@@ -187,10 +96,10 @@ def split_into_accumulation_terms(expr):
                 replacement[trial_arg.expr] = trial_arg.expr
                 jac_expr = replace_expression(replace_expr, replacemap=replacement)
 
-                # 5.2) Propagate indexed zeros to simplify expression
+                # 3.2) Propagate indexed zeros to simplify expression
                 jac_expr = zero_propagation(jac_expr)
 
-                # 5.3) Accumulate according to restriction
+                # 3.3) Split according to restriction
                 indexed_jac_args = extract_modified_arguments(jac_expr, argnumber=1, do_index=True)
                 for restriction in (Restriction.NONE, Restriction.POSITIVE, Restriction.NEGATIVE):
                     replacement = {ma.expr: Zero(shape=ma.expr.ufl_shape,
@@ -201,10 +110,106 @@ def split_into_accumulation_terms(expr):
 
                     acc_expr = replace_expression(jac_expr, replacemap=replacement)
 
-                    if not isinstance(jac_expr, Zero):
-                        ret.append(AccumulationTerm(acc_expr, test_arg, indexmap, newi))
+                    if not isinstance(acc_expr, Zero):
+                        ret.append(acc_expr)
         else:
             if not isinstance(replace_expr, Zero):
-                ret.append(AccumulationTerm(replace_expr, test_arg, indexmap, newi))
+                ret.append(replace_expr)
 
     return ret
+
+
+def cut_accumulation_term(expr):
+    # TODO: doc me
+    test_args = extract_modified_arguments(expr, argnumber=0, do_index=False)
+    assert len(test_args) == 1
+    test_arg = test_args[0]
+
+    # 1) Cut the test function itself from the expression
+    #
+    # This is done by replacing the test function with an
+    # appropriate product of identity matrices. This way we can
+    # make sure that the indices of the result will be right. This
+    # is best explained by an example:
+    #
+    # Suppose we have the following expression:
+    #
+    # \sum_{i,j} a_{i,j} (\nabla v)_{i,j} + \sum_{k,l} b_{k,l} (\nable v)_{k,l}
+    #
+    # If we want to cut the gradient of the test function v we
+    # need to make sure, that both sums have the right indices:
+    #
+    # \sum_{m,n} (a_{m,n} + b_{m,n}) (\nabla v)_{m,n}
+    #
+    # and we extract (a_{m,n} + b_{m,n}). We achieve that by the
+    # following replacements:
+    #
+    # (\nabla v)_{i,j} -> I_{m,i} I_{n,j}
+    # (\nabla v)_{k,l} -> I_{m,k} I_{n,l}
+    #
+    # Resulting in:
+    #
+    # \sum_{i,j} a_{i,j} I_{m,i} I_{n,j} + \sum_{k,l} b_{k,l} I_{m,k} I_{n,l}
+    #
+    # In step 2 this will collaps to: a_{m,n} + b_{m,n}
+    replacement = {}
+    indexmap = {}
+    newi = None
+    backmap = {}
+    # Get all appearances of test functions with their indices
+    indexed_test_args = extract_modified_arguments(expr, argnumber=0, do_index=True)
+    for indexed_test_arg in indexed_test_args:
+        if indexed_test_arg.index:
+            # If the test function is indexed, create a new multiindex of this shape
+            # -> (m,n) in the example above
+            if newi is None:
+                newi = indices(len(indexed_test_arg.index))
+
+            # This handles the special case with two identical
+            # indices on an test function. E.g. in Stokes on an
+            # axiparallel grid you get a term:
+            #
+            # -(\sum_i K_{i,i} (\nabla v)_{i,i}) w
+            #   = \sum_k \sum_l (-K_{k,k} w I_{k,l} (\nabla v)_{k,l})
+            #
+            # and we want to split
+            #
+            # -K_{k,k} w I_{k,l} corresponding to (\nabla v)_{k,l}.
+            #
+            # This is done by:
+            # - Replacing (\nabla v)_{i,i} with I_{k,i}*(\nabla
+            #   v)_{k,l}. Here (\nabla v)_{k,l} serves as a
+            #   placeholder and will be replaced later on.
+            # - Propagating the identity in step 4.
+            # - Replacing (\nabla v)_{k,l} by I_{k,l} after step 4.
+            if len(set(indexed_test_arg.index._indices)) < len(indexed_test_arg.index._indices):
+                if len(indexed_test_arg.index._indices) > 2:
+                    raise NotImplementedError("Test argument with more than three indices and double occurence ist not implemented.")
+                mod_index_map = {indexed_test_arg.index: MultiIndex((newi[0], newi[1]))}
+                mod_indexed_test_arg = replace_expression(indexed_test_arg.expr,
+                                                          replacemap=mod_index_map)
+                rep = Product(Indexed(Identity(2),
+                                      MultiIndex((newi[0], indexed_test_arg.index[0]))),
+                              mod_indexed_test_arg)
+                backmap.update({mod_indexed_test_arg:
+                                Indexed(Identity(2), MultiIndex((newi[0], newi[1])))})
+                replacement.update({indexed_test_arg.expr: rep})
+                indexmap.update({indexed_test_arg.index[0]: newi[0]})
+            else:
+                # Replace indexed test function with a product of identities.
+                identities = tuple(Indexed(Identity(2), MultiIndex((i,) + (j,)))
+                                   for i, j in zip(newi, indexed_test_arg.index._indices))
+                replacement.update({indexed_test_arg.expr:
+                                    construct_binary_operator(identities, Product)})
+
+                indexmap.update({i: j for i, j in zip(indexed_test_arg.index._indices, newi)})
+        else:
+            replacement.update({indexed_test_arg.expr: IntValue(1)})
+    expr = replace_expression(expr, replacemap=replacement)
+
+    # 2) Collapse any identity nodes that may have been introduced
+    # by replacing vectors and maybe replace placeholder from last step
+    expr = identity_propagation(expr)
+    expr = replace_expression(expr, replacemap=backmap)
+
+    return AccumulationTerm(expr, test_arg, indexmap, newi)
-- 
GitLab