diff --git a/test/stokes/stokes_3d_dg_quadrilateral.mini b/test/stokes/stokes_3d_dg_quadrilateral.mini
index 7f7c1d3ad532131769200ce70d5ba2b97695db9c..0666571bb6b36110dce40b9b53c54db19ad21de6 100644
--- a/test/stokes/stokes_3d_dg_quadrilateral.mini
+++ b/test/stokes/stokes_3d_dg_quadrilateral.mini
@@ -11,5 +11,3 @@ extension = vtu
 
 [formcompiler]
 numerical_jacobian = 0, 1 | expand num
-exact_solution_expression = g
-compare_l2errorsquared = 5e-7
diff --git a/test/stokes/stokes_3d_dg_quadrilateral.ufl b/test/stokes/stokes_3d_dg_quadrilateral.ufl
index 313c5ad8f11759db6ca5664540ae4fa31d2007fc..0f3cc62a3cbac340bcd74f19495a23b9efc710d2 100644
--- a/test/stokes/stokes_3d_dg_quadrilateral.ufl
+++ b/test/stokes/stokes_3d_dg_quadrilateral.ufl
@@ -1,9 +1,7 @@
 cell = hexahedron
 
 x = SpatialCoordinate(cell)
-g_v = as_vector((4*x[1]*(1.-x[1]), 0.0, 0.0))
-g_p = 8*(1.-x[0])
-g = (g_v, g_p)
+g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0))
 bctype = conditional(x[0] < 1. - 1e-8, 1, 0)
 
 P2 = VectorElement("DG", cell, 2)
diff --git a/test/stokes/stokes_3d_quadrilateral.mini b/test/stokes/stokes_3d_quadrilateral.mini
index 7dac56262294ae564eb8eb1c29f397a2d8f2186a..ba7ac30fd48dd93bace3630c1c9d4b213543ba9c 100644
--- a/test/stokes/stokes_3d_quadrilateral.mini
+++ b/test/stokes/stokes_3d_quadrilateral.mini
@@ -12,5 +12,3 @@ extension = vtu
 
 [formcompiler]
 numerical_jacobian = 1, 0 | expand num
-exact_solution_expression = g
-compare_l2errorsquared = 1e-10
diff --git a/test/stokes/stokes_3d_quadrilateral.ufl b/test/stokes/stokes_3d_quadrilateral.ufl
index 18d3dae31031c9e4ed266ea41a6275b80d5b9245..60d5a74cd6484cb99ca3788fa42e24cdc0c785ec 100644
--- a/test/stokes/stokes_3d_quadrilateral.ufl
+++ b/test/stokes/stokes_3d_quadrilateral.ufl
@@ -2,11 +2,9 @@ cell = hexahedron
 
 x = SpatialCoordinate(cell)
 v_bctype = conditional(x[0] < 1. - 1e-8, 1, 0)
-g_v = as_vector((4.*x[1]*(1.-x[1]), 0.0, 0.0))
-g_p = 8.*(1.-x[0])
-g = (g_v, g_p)
+g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0))
 
-P2 = VectorElement("Lagrange", cell, 2, dirichlet_constraints=v_bctype, dirichlet_expression=g_v)
+P2 = VectorElement("Lagrange", cell, 2)
 P1 = FiniteElement("Lagrange", cell, 1)
 TH = P2 * P1
 
@@ -16,3 +14,5 @@ u, p = TrialFunctions(TH)
 r = (inner(grad(v), grad(u)) - div(v)*p - q*div(u))*dx
 
 forms = [r]
+is_dirichlet = v_bctype, v_bctype, v_bctype, 0
+dirichlet_expression = g_v, None