diff --git a/test/stokes/stokes_3d_dg_quadrilateral.mini b/test/stokes/stokes_3d_dg_quadrilateral.mini index 7f7c1d3ad532131769200ce70d5ba2b97695db9c..0666571bb6b36110dce40b9b53c54db19ad21de6 100644 --- a/test/stokes/stokes_3d_dg_quadrilateral.mini +++ b/test/stokes/stokes_3d_dg_quadrilateral.mini @@ -11,5 +11,3 @@ extension = vtu [formcompiler] numerical_jacobian = 0, 1 | expand num -exact_solution_expression = g -compare_l2errorsquared = 5e-7 diff --git a/test/stokes/stokes_3d_dg_quadrilateral.ufl b/test/stokes/stokes_3d_dg_quadrilateral.ufl index 313c5ad8f11759db6ca5664540ae4fa31d2007fc..0f3cc62a3cbac340bcd74f19495a23b9efc710d2 100644 --- a/test/stokes/stokes_3d_dg_quadrilateral.ufl +++ b/test/stokes/stokes_3d_dg_quadrilateral.ufl @@ -1,9 +1,7 @@ cell = hexahedron x = SpatialCoordinate(cell) -g_v = as_vector((4*x[1]*(1.-x[1]), 0.0, 0.0)) -g_p = 8*(1.-x[0]) -g = (g_v, g_p) +g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0)) bctype = conditional(x[0] < 1. - 1e-8, 1, 0) P2 = VectorElement("DG", cell, 2) diff --git a/test/stokes/stokes_3d_quadrilateral.mini b/test/stokes/stokes_3d_quadrilateral.mini index 7dac56262294ae564eb8eb1c29f397a2d8f2186a..ba7ac30fd48dd93bace3630c1c9d4b213543ba9c 100644 --- a/test/stokes/stokes_3d_quadrilateral.mini +++ b/test/stokes/stokes_3d_quadrilateral.mini @@ -12,5 +12,3 @@ extension = vtu [formcompiler] numerical_jacobian = 1, 0 | expand num -exact_solution_expression = g -compare_l2errorsquared = 1e-10 diff --git a/test/stokes/stokes_3d_quadrilateral.ufl b/test/stokes/stokes_3d_quadrilateral.ufl index 18d3dae31031c9e4ed266ea41a6275b80d5b9245..60d5a74cd6484cb99ca3788fa42e24cdc0c785ec 100644 --- a/test/stokes/stokes_3d_quadrilateral.ufl +++ b/test/stokes/stokes_3d_quadrilateral.ufl @@ -2,11 +2,9 @@ cell = hexahedron x = SpatialCoordinate(cell) v_bctype = conditional(x[0] < 1. - 1e-8, 1, 0) -g_v = as_vector((4.*x[1]*(1.-x[1]), 0.0, 0.0)) -g_p = 8.*(1.-x[0]) -g = (g_v, g_p) +g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0)) -P2 = VectorElement("Lagrange", cell, 2, dirichlet_constraints=v_bctype, dirichlet_expression=g_v) +P2 = VectorElement("Lagrange", cell, 2) P1 = FiniteElement("Lagrange", cell, 1) TH = P2 * P1 @@ -16,3 +14,5 @@ u, p = TrialFunctions(TH) r = (inner(grad(v), grad(u)) - div(v)*p - q*div(u))*dx forms = [r] +is_dirichlet = v_bctype, v_bctype, v_bctype, 0 +dirichlet_expression = g_v, None