diff --git a/bin/process_measurements.py b/bin/process_measurements.py index b7220652f6da692cbcb82ce90f69cfa1f5599128..0da251d045b53a8b960c286dbb19a3ff581292dc 100755 --- a/bin/process_measurements.py +++ b/bin/process_measurements.py @@ -8,19 +8,19 @@ import re def join_csv_files(): with open('timings.csv', 'w') as out: for f in os.listdir(os.getcwd()): - match = re.match(".*pid-([0-9]*).csv", f) + match = re.match(".*rank-([0-9]*).*", f) if match: for line in open(f, 'r'): out.write("{} {}".format(match.group(1), line)) def calculate_floprate(): - frame = pandas.read_csv('timings.csv', header=None, names=('pid', 'ident', 'kernel', 'what', 'value'), delimiter=' ') + frame = pandas.read_csv('timings.csv', header=None, names=('rank', 'ident', 'kernel', 'what', 'value'), delimiter=' ') time = frame[frame.what == "time"] ops = frame[frame.what != "time"] - time = time.groupby(('pid', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() - ops = ops.groupby(('pid', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() + time = time.groupby(('rank', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() + ops = ops.groupby(('rank', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() with open('floprates.csv', 'w') as out: for key in time.keys(): @@ -30,12 +30,12 @@ def calculate_floprate(): def calculate_doftimes(): - frame = pandas.read_csv('timings.csv', header=None, names=('pid', 'ident', 'kernel', 'what', 'value'), delimiter=' ') + frame = pandas.read_csv('timings.csv', header=None, names=('rank', 'ident', 'kernel', 'what', 'value'), delimiter=' ') dofs = frame[frame.what == "dofs"] time = frame[frame.what == "time"] - dofs = dofs.groupby(('pid', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() - time = time.groupby(('pid', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() + dofs = dofs.groupby(('rank', 'ident', 'kernel'))['value'].max().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() + time = time.groupby(('rank', 'ident', 'kernel'))['value'].min().to_frame().reset_index().groupby(('ident', 'kernel'))['value'].max() with open('doftimes.csv', 'w') as out: for key in time.keys():