diff --git a/python/dune/codegen/pdelab/tensors.py b/python/dune/codegen/pdelab/tensors.py index a924a39ae1bba19a94c47e5542567d8717cedf57..6bd0eafdd2f055f4007446f7b977e37728574ea7 100644 --- a/python/dune/codegen/pdelab/tensors.py +++ b/python/dune/codegen/pdelab/tensors.py @@ -8,12 +8,140 @@ from dune.codegen.generation import (get_counted_variable, temporary_variable, ) +from loopy.match import Writes + import pymbolic.primitives as prim import numpy as np import loopy as lp import itertools as it +def define_determinant(name, matrix, shape, visitor): + temporary_variable(name) + + assert len(shape) == 2 and shape[0] == shape[1] + dim = shape[0] + + matrix_entry = [[prim.Subscript(prim.Variable(matrix), (i, j)) for j in range(dim)] for i in range(dim)] + if dim == 2: + expr_determinant = prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[1][1])), + -1 * prim.Product((matrix_entry[1][0], matrix_entry[0][1])))) + elif dim == 3: + expr_determinant = prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[1][1], matrix_entry[2][2])), + prim.Product((matrix_entry[0][1], matrix_entry[1][2], matrix_entry[2][0])), + prim.Product((matrix_entry[0][2], matrix_entry[1][0], matrix_entry[2][1])), + -1 * prim.Product((matrix_entry[0][2], matrix_entry[1][1], matrix_entry[2][0])), + -1 * prim.Product((matrix_entry[0][0], matrix_entry[1][2], matrix_entry[2][1])), + -1 * prim.Product((matrix_entry[0][1], matrix_entry[1][0], matrix_entry[2][2])) + )) + else: + raise NotImplementedError() + instruction(expression=expr_determinant, + assignee=prim.Variable(name), + within_inames=frozenset(visitor.quadrature_inames()), + depends_on=frozenset({Writes(matrix)}) + ) + + +def define_determinant_inverse(name, matrix, shape, visitor): + det = name_determinant(matrix, shape, visitor) + + temporary_variable(name) + + instruction(expression=prim.Quotient(1, prim.Variable(det)), + assignee=prim.Variable(name), + within_inames=frozenset(visitor.quadrature_inames()), + depends_on=frozenset({Writes(matrix)}) + ) + + +def define_matrix_inverse(name, name_inv, shape, visitor): + temporary_variable(name_inv, shape=shape, managed=True) + + det_inv = name_determinant_inverse(name, shape, visitor) + + assert len(shape) == 2 and shape[0] == shape[1] + dim = shape[0] + + matrix_entry = [[prim.Subscript(prim.Variable(name), (i, j)) for j in range(dim)] for i in range(dim)] + assignee = [[prim.Subscript(prim.Variable(name_inv), (i, j)) for j in range(dim)] for i in range(dim)] + exprs = [[None for _ in range(dim)] for _ in range(dim)] + + if dim == 2: + for i in range(2): + for j in range(2): + sign = 1. if i == j else -1. + exprs[i][j] = prim.Product((sign, prim.Variable(det_inv), matrix_entry[1 - i][1 - j])) + elif dim == 3: + exprs[0][0] = prim.Product((1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[1][1], matrix_entry[2][2])), + -1 * prim.Product((matrix_entry[1][2], matrix_entry[2][1])))))) + exprs[1][0] = prim.Product((-1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][1], matrix_entry[2][2])), + -1 * prim.Product((matrix_entry[0][2], matrix_entry[2][1])))))) + exprs[2][0] = prim.Product((1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][1], matrix_entry[1][2])), + -1 * prim.Product((matrix_entry[0][2], matrix_entry[1][1])))))) + + exprs[0][1] = prim.Product((-1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[1][0], matrix_entry[2][2])), + -1 * prim.Product((matrix_entry[1][2], matrix_entry[2][0])))))) + exprs[1][1] = prim.Product((1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[2][2])), + -1 * prim.Product((matrix_entry[0][2], matrix_entry[2][0])))))) + exprs[2][1] = prim.Product((-1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[1][2])), + -1 * prim.Product((matrix_entry[0][2], matrix_entry[1][0])))))) + + exprs[0][2] = prim.Product((1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[1][0], matrix_entry[2][1])), + -1 * prim.Product((matrix_entry[1][1], matrix_entry[2][0])))))) + exprs[1][2] = prim.Product((-1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[2][1])), + -1 * prim.Product((matrix_entry[0][1], matrix_entry[2][0])))))) + exprs[2][2] = prim.Product((1., prim.Variable(det_inv), + prim.Sum((prim.Product((matrix_entry[0][0], matrix_entry[1][1])), + -1 * prim.Product((matrix_entry[0][1], matrix_entry[1][0])))))) + else: + raise NotImplementedError + for j in range(dim): + for i in range(dim): + instruction(expression=exprs[i][j], + assignee=assignee[i][j], + within_inames=frozenset(visitor.quadrature_inames()), + depends_on=frozenset({Writes(name)})) + + +def name_determinant(matrix, shape, visitor): + name = matrix + "_det" + + define_determinant(name, matrix, shape, visitor) + + return name + + +def name_determinant_inverse(matrix, shape, visitor): + name = matrix + "_det_inv" + + define_determinant_inverse(name, matrix, shape, visitor) + + return name + + +def name_matrix_inverse(name, shape, visitor): + name_inv = name + "_inv" + + define_matrix_inverse(name, name_inv, shape, visitor) + + return name_inv + + +def matrix_inverse(name, shape, visitor): + name_inv = name_matrix_inverse(name, shape, visitor) + + return prim.Variable(name_inv) + + def define_assembled_tensor(name, expr, visitor): temporary_variable(name, shape=expr.ufl_shape, @@ -22,7 +150,7 @@ def define_assembled_tensor(name, expr, visitor): visitor.indices = indices instruction(assignee=prim.Subscript(prim.Variable(name), indices), expression=visitor.call(expr), - forced_iname_deps=frozenset(visitor.interface.quadrature_inames()), + forced_iname_deps=frozenset(visitor.quadrature_inames()), depends_on=frozenset({lp.match.Tagged("sumfact_stage1")}), tags=frozenset({"quad"}), ) @@ -37,17 +165,11 @@ def name_assembled_tensor(o, visitor): @kernel_cached def pymbolic_matrix_inverse(o, visitor): + expr = o.ufl_operands[0] + indices = visitor.indices visitor.indices = None - name = name_assembled_tensor(o.ufl_operands[0], visitor) - - instruction(code="{}.invert();".format(name), - within_inames=frozenset(visitor.interface.quadrature_inames()), - depends_on=frozenset({lp.match.Writes(name), - lp.match.Tagged("sumfact_stage1"), - }), - tags=frozenset({"quad"}), - ) - + name = name_assembled_tensor(expr, visitor) visitor.indices = indices - return prim.Variable(name) + + return matrix_inverse(name, expr.ufl_shape, visitor)