diff --git a/test/stokes/stokes_3d_dg_quadrilateral.mini b/test/stokes/stokes_3d_dg_quadrilateral.mini
index 0666571bb6b36110dce40b9b53c54db19ad21de6..caeed8bc551b11582ef822868567603aa87fa4ab 100644
--- a/test/stokes/stokes_3d_dg_quadrilateral.mini
+++ b/test/stokes/stokes_3d_dg_quadrilateral.mini
@@ -11,3 +11,4 @@ extension = vtu
 
 [formcompiler]
 numerical_jacobian = 0, 1 | expand num
+compare_l2errorsquared = 2e-8
\ No newline at end of file
diff --git a/test/stokes/stokes_3d_dg_quadrilateral.ufl b/test/stokes/stokes_3d_dg_quadrilateral.ufl
index 0f3cc62a3cbac340bcd74f19495a23b9efc710d2..769bd611078b9441e9aa4b1897c876d08882cbcd 100644
--- a/test/stokes/stokes_3d_dg_quadrilateral.ufl
+++ b/test/stokes/stokes_3d_dg_quadrilateral.ufl
@@ -1,7 +1,7 @@
 cell = hexahedron
 
 x = SpatialCoordinate(cell)
-g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0))
+g_v = as_vector((4.*x[1]*(1.-x[1]), 0.0, 0.0))
 bctype = conditional(x[0] < 1. - 1e-8, 1, 0)
 
 P2 = VectorElement("DG", cell, 2)
@@ -33,3 +33,4 @@ r = inner(grad(u), grad(v))*dx \
   - q*inner(g_v, n)*ds
 
 forms = [r]
+exact_solution = g_v, 8.*(1.-x[0])
diff --git a/test/stokes/stokes_3d_quadrilateral.mini b/test/stokes/stokes_3d_quadrilateral.mini
index ba7ac30fd48dd93bace3630c1c9d4b213543ba9c..89c4796da75f3212ca59f44cace5a53229b1259a 100644
--- a/test/stokes/stokes_3d_quadrilateral.mini
+++ b/test/stokes/stokes_3d_quadrilateral.mini
@@ -12,3 +12,4 @@ extension = vtu
 
 [formcompiler]
 numerical_jacobian = 1, 0 | expand num
+compare_l2errorsquared = 1e-10
\ No newline at end of file
diff --git a/test/stokes/stokes_3d_quadrilateral.ufl b/test/stokes/stokes_3d_quadrilateral.ufl
index 60d5a74cd6484cb99ca3788fa42e24cdc0c785ec..0888298844ccf8e7ebda072c26c4908e96565072 100644
--- a/test/stokes/stokes_3d_quadrilateral.ufl
+++ b/test/stokes/stokes_3d_quadrilateral.ufl
@@ -2,7 +2,7 @@ cell = hexahedron
 
 x = SpatialCoordinate(cell)
 v_bctype = conditional(x[0] < 1. - 1e-8, 1, 0)
-g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0))
+g_v = as_vector((4.*x[1]*(1.-x[1]), 0.0, 0.0))
 
 P2 = VectorElement("Lagrange", cell, 2)
 P1 = FiniteElement("Lagrange", cell, 1)
@@ -14,5 +14,6 @@ u, p = TrialFunctions(TH)
 r = (inner(grad(v), grad(u)) - div(v)*p - q*div(u))*dx
 
 forms = [r]
+exact_solution = g_v, 8.*(1.-x[0])
 is_dirichlet = v_bctype, v_bctype, v_bctype, 0
 dirichlet_expression = g_v, None
diff --git a/test/sumfact/poisson/diagonal.mini b/test/sumfact/poisson/diagonal.mini
index 3b688baa75576580fe484c0dda17ed480a44f00d..bcbab188a4c7ada55c7077c10d7399406705fc77 100644
--- a/test/sumfact/poisson/diagonal.mini
+++ b/test/sumfact/poisson/diagonal.mini
@@ -1,6 +1,6 @@
 __name = sumfact_poisson_dg_3d_diagonal
 
-cells = 8 8 8
+cells = 4 4 4
 extension = 1. 1. 1.
 
 [wrapper.vtkcompare]
@@ -13,8 +13,8 @@ compare_l2errorsquared = 1e-5
 vectorize_quad = 1
 vectorize_grads = 0
 vectorize_diagonal = 1
-quadrature_order = 6
+quadrature_order = 6, 6, 6
 fastdg = 1
 
 [formcompiler.ufl_variants]
-degree = 2
+degree = 3
diff --git a/test/sumfact/stokes/stokes_3d_dg.mini b/test/sumfact/stokes/stokes_3d_dg.mini
index dac8dbc82bebd1edd8eecfbc17a197e094c69995..b7ec60614d3159d8792b42ab1c416c4926150120 100644
--- a/test/sumfact/stokes/stokes_3d_dg.mini
+++ b/test/sumfact/stokes/stokes_3d_dg.mini
@@ -15,3 +15,4 @@ extension = vtu
 numerical_jacobian = 0
 sumfact = 1
 fastdg = 1, 0 | expand fastdg
+compare_l2errorsquared = 1e-10
\ No newline at end of file
diff --git a/test/sumfact/stokes/stokes_3d_dg.ufl b/test/sumfact/stokes/stokes_3d_dg.ufl
index 0f3cc62a3cbac340bcd74f19495a23b9efc710d2..769bd611078b9441e9aa4b1897c876d08882cbcd 100644
--- a/test/sumfact/stokes/stokes_3d_dg.ufl
+++ b/test/sumfact/stokes/stokes_3d_dg.ufl
@@ -1,7 +1,7 @@
 cell = hexahedron
 
 x = SpatialCoordinate(cell)
-g_v = as_vector((16.*x[1]*(1.-x[1])*x[2]*(1.-x[2]), 0.0, 0.0))
+g_v = as_vector((4.*x[1]*(1.-x[1]), 0.0, 0.0))
 bctype = conditional(x[0] < 1. - 1e-8, 1, 0)
 
 P2 = VectorElement("DG", cell, 2)
@@ -33,3 +33,4 @@ r = inner(grad(u), grad(v))*dx \
   - q*inner(g_v, n)*ds
 
 forms = [r]
+exact_solution = g_v, 8.*(1.-x[0])