from __future__ import absolute_import from dune.perftool.options import get_option from dune.perftool.generation import generator_factory from dune.perftool.pdelab import dune_symbol from cgen import Include from pytools import memoize # Define the generators used in-here operator_include = generator_factory(item_tags=("include", "operator"), on_store=lambda i: Include(i), no_deco=True) from dune.perftool.cgen.clazz import BaseClass public_base_class = generator_factory(item_tags=("baseclass", "operator"), on_store=lambda n: BaseClass(n), counted=True, no_deco=True) initializer_list = generator_factory(item_tags=("pdelab", "initializer", "operator"), counted=True, no_deco=True) # TODO definition #private_member = generator_factory(item_tags=("pdelab", "member", "privatemember")) @generator_factory(item_tags=("pdelab", "constructor"), counted=True) def constructor_parameter(_type, name): return "{} {}".format(_type, name) @dune_symbol def name_initree_constructor(): operator_include('dune/common/parametertree.hh') constructor_parameter("const Dune::ParameterTree&", "iniParams") return "iniParams" @memoize def measure_specific_details(measure): # The return dictionary that this memoized method will grant direct access to. ret = {} def numerical_jacobian(which): if get_option("numerical_jacobian"): # Add a base class from dune.perftool.pdelab.driver import type_localoperator loptype = type_localoperator() public_base_class("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype)) # Add the initializer list for that base class ini = name_initree_constructor() initializer_list("Dune::PDELab::NumericalJacobian{}<{}>({}.get(\"numerical_epsilon.{}\", 1e-9))".format(which, loptype, ini, which.lower())) if measure == "cell": public_base_class('Dune::PDELab::FullVolumePattern') numerical_jacobian("Volume") ret["residual_signature"] = ['template<typename EG, typename LFSV0, typename X, typename LFSV1, typename R>', 'void alpha_volume(const EG& eg, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, R& r) const'] ret["jacobian_signature"] = ['template<typename EG, typename LFSV0, typename X, typename LFSV1, typename J>', 'void jacobian_volume(const EG& eg, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, J& jac) const'] if measure == "exterior_facet": public_base_class('Dune::PDELab::FullBoundaryPattern') numerical_jacobian("Boundary") ret["residual_signature"] = ['template<typename IG, typename LFSV0, typename X, typename LFSV1, typename R>', 'void alpha_boundary(const IG& ig, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, R& r) const'] ret["jacobian_signature"] = ['template<typename IG, typename LFSV0, typename X, typename LFSV1, typename J>', 'void jacobian_boundary(const IG& ig, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, J& jac) const'] if measure == "interior_facet": public_base_class('Dune::PDELab::FullSkeletonPattern') numerical_jacobian("Skeleton") ret["residual_signature"] = ['template<typename IG, typename LFSV0_S, typename X, typename LFSV1_S, typename LFSV0_N, typename R, typename LFSV1_N>', 'void alpha_skeleton(const IG& ig, const LFSV0_S& lfsv0_s, const X& x_s, const LFSV1_S& lfsv1_s, const LFSV0_N& lfsv0_n, const X& x_n, const LFSV1_N& lfsv1_n, R& r_s, R& r_n) const'] ret["jacobian_signature"] = ['template<typename IG, typename LFSV0_S, typename X, typename LFSV1_S, typename LFSV0_N, typename LFSV1_N, typename Jac>', 'void jacobian_skeleton(const IG& ig, const LFSV0_S& lfsv0_s, const X& x_s, const LFSV1_S& lfsv1_s, const LFSV0_N& lfsv0_n, const X& x_n, const LFSV1_N& lfsv1_n, Jac& jac_ss, Jac& jac_sn, Jac& jac_ns, Jac& jac_nn) const'] return ret def generate_kernel(integrand=None, measure=None): assert integrand and measure # Delete all non-include parts of the cache. # TODO: add things such as base classes as cache items. from dune.perftool.generation import delete_cache delete_cache() # Get the measure specifics specifics = measure_specific_details(measure) # Now split the given integrand into accumulation expressions from dune.perftool.ufl.transformations.extract_accumulation_terms import split_into_accumulation_terms accterms = split_into_accumulation_terms(integrand) # Iterate over the terms and generate a kernel for term in accterms: from dune.perftool.loopy.transformer import transform_accumulation_term transform_accumulation_term(term) # Extract the information, which is needed to create a loopy kernel. # First extracting it, might be useful to alter it before kernel generation. from dune.perftool.generation import retrieve_cache_items from dune.perftool.loopy.target import DuneTarget domains = [i for i in retrieve_cache_items("domain")] instructions = [i for i in retrieve_cache_items("instruction")] temporaries = {i.name:i for i in retrieve_cache_items("temporary")} preambles = [i for i in retrieve_cache_items("preamble")] arguments = [i for i in retrieve_cache_items("argument")] # Create the kernel from loopy import make_kernel, preprocess_kernel kernel = make_kernel(domains, instructions, arguments, temporary_variables=temporaries, preambles=preambles, target=DuneTarget()) kernel = preprocess_kernel(kernel) # Return the actual code (might instead return kernels...) return kernel from dune.perftool.cgen.clazz import ClassMember class AssemblyMethod(ClassMember): def __init__(self, signature, kernel): from loopy import generate_code from cgen import LiteralLines content = LiteralLines('\n'+'\n'.join(signature) + '\n' + generate_code(kernel)[0]) ClassMember.__init__(self, content) def cgen_class_from_cache(name, tag, members=[]): from dune.perftool.generation import retrieve_cache_items base_classes = [bc for bc in retrieve_cache_items(tags=(tag, "baseclass"), union=False)] from dune.perftool.cgen import Class return Class(name, base_classes=base_classes, members=members) def generate_localoperator(form): # For the moment, I do assume that there is but one integral of each type. This might differ # if you use different quadrature orders for different terms. assert len(form.integrals()) == len(set(i.integral_type() for i in form.integrals())) # Reset the generation cache from dune.perftool.generation import delete_cache delete_cache() # Manage includes and base classes that we always need operator_include('dune/pdelab/gridfunctionspace/gridfunctionspaceutilities.hh') operator_include('dune/pdelab/localoperator/idefault.hh') operator_include('dune/pdelab/localoperator/flags.hh') operator_include('dune/pdelab/localoperator/pattern.hh') operator_include('dune/geometry/quadraturerules.hh') public_base_class('Dune::PDELab::LocalOperatorDefaultFlags') # Have a data structure collect the generated kernels operator_kernels = {} # Generate the necessary residual methods for integral in form.integrals(): kernel = generate_kernel(integrand=integral.integrand(), measure=integral.integral_type()) operator_kernels[(integral.integral_type(), 'residual')] = kernel # Generate the necessary jacobian methods from dune.perftool.options import get_option if get_option("numerical_jacobian"): operator_include("dune/pdelab/localoperator/defaultimp.hh") else: from ufl import derivative from ufl.algorithms import expand_derivatives jacform = expand_derivatives(derivative(form, form.coefficients()[0])) for integral in jacform.integrals(): kernel = generate_kernel(integrand=integral.integrand(), measure=integral.integral_type()) operator_kernels[(integral.integral_type(), 'jacobian')] = kernel # TODO: JacobianApply for matrix-free computations. # Return the set of generated kernels return operator_kernels def generate_localoperator_file(kernels): operator_methods = [] # Make generables from the given kernels for method, kernel in kernels.items(): signature = measure_specific_details(method[0])["{}_signature".format(method[1])] operator_methods.append(AssemblyMethod(signature, kernel)) # Write the file! from dune.perftool.file import generate_file # TODO take the name of this thing from the UFL file lop = cgen_class_from_cache("LocalOperator", "operator", members=operator_methods) generate_file(get_option("operator_file"), "operator", [lop])