from pytools import memoize from dune.perftool.options import get_option from dune.perftool.generation import generator_factory from dune.perftool.pdelab import dune_symbol # Define the generators used in-here operator_include = generator_factory(item_tags=("pdelab", "include", "operator"), on_store=lambda i: "#include<{}>".format(i), no_deco=True) base_class = generator_factory(item_tags=("pdelab", "baseclass", "operator"), counted=True, no_deco=True) initializer_list = generator_factory(item_tags=("pdelab", "initializer", "operator"), counted=True, no_deco=True) # TODO definition #private_member = generator_factory(item_tags=("pdelab", "member", "privatemember")) @generator_factory(item_tags=("pdelab", "constructor"), counted=True) def constructor_parameter(_type, name): return "{} {}".format(_type, name) @dune_symbol def name_initree_constructor(): operator_include('dune/common/parametertree.hh') constructor_parameter("const Dune::ParameterTree&", "iniParams") return "iniParams" @memoize def measure_specific_details(measure): # The return dictionary that this memoized method will grant direct access to. ret = {} def numerical_jacobian(which): if get_option("numerical_jacobian"): # Add a base class from dune.perftool.pdelab.driver import type_localoperator loptype = type_localoperator() base_class("Dune::PDELab::NumericalJacobian{}<{}>".format(which, loptype)) # Add the initializer list for that base class ini = name_initree_constructor() initializer_list("Dune::PDELab::NumericalJacobian{}<{}>({}.get(\"numerical_epsilon.{}\", 1e-9))".format(which, loptype, ini, which.lower())) if measure == "cell": base_class('Dune::PDELab::FullVolumePattern') numerical_jacobian("Volume") ret["residual_signature"] = ['template<typename EG, typename LFSV0, typename X, typename LFSV1, typename R>', 'void alpha_volume(const EG& eg, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, R& r) const'] ret["jacobian_signature"] = ['template<typename EG, typename LFSV0, typename X, typename LFSV1, typename J>', 'void jacobian_volume(const EG& eg, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, J& jac) const'] if measure == "exterior_facet": base_class('Dune::PDELab::FullBoundaryPattern') numerical_jacobian("Boundary") ret["residual_signature"] = ['template<typename IG, typename LFSV0, typename X, typename LFSV1, typename R>', 'void alpha_boundary(const IG& ig, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, R& r) const'] ret["jacobian_signature"] = ['template<typename IG, typename LFSV0, typename X, typename LFSV1, typename J>', 'void jacobian_boundary(const IG& ig, const LFSV0& lfsv0, const X& x, const LFSV1& lfsv1, J& jac) const'] if measure == "interior_facet": base_class('Dune::PDELab::FullSkeletonPattern') numerical_jacobian("Skeleton") ret["residual_signature"] = ['template<typename IG, typename LFSV0_S, typename X, typename LFSV1_S, typename LFSV0_N, typename R, typename LFSV1_N>', 'void alpha_skeleton(const IG& ig, const LFSV0_S& lfsv0_s, const X& x_s, const LFSV1_S& lfsv1_s, const LFSV0_N& lfsv0_n, const X& x_n, const LFSV1_N& lfsv1_n, R& r_s, R& r_n) const'] ret["jacobian_signature"] = ['template<typename IG, typename LFSV0_S, typename X, typename LFSV1_S, typename LFSV0_N, typename LFSV1_N, typename Jac>', 'void jacobian_skeleton(const IG& ig, const LFSV0_S& lfsv0_s, const X& x_s, const LFSV1_S& lfsv1_s, const LFSV0_N& lfsv0_n, const X& x_n, const LFSV1_N& lfsv1_n, Jac& jac_ss, Jac& jac_sn, Jac& jac_ns, Jac& jac_nn) const'] return ret def generate_term(integrand=None, measure=None): assert integrand and measure # Delete all non-include parts of the cache. # TODO: add things such as base classes as cache items. from dune.perftool.generation import delete_cache delete_cache() # Get the measure specifics specifics = measure_specific_details(measure) # Transform the expression. All relevant results are then in the cache from dune.perftool.transformer import transform_expression transform_expression(integrand) # Extract the information, which is needed to create a loopy kernel. # First extracting it, might be useful to alter it before kernel generation. from dune.perftool.generation import retrieve_cache_items from dune.perftool.target import DuneTarget domains = [i for i in retrieve_cache_items("domain")] instructions = [i for i in retrieve_cache_items("instruction")] temporaries = {i.name:i for i in retrieve_cache_items("temporary")} preambles = [i for i in retrieve_cache_items("preamble")] # TODO it might be necessary to list the arguments and their shape manually to avoid automatic shape detection! import loopy import numpy from loopy import make_kernel, preprocess_kernel from dune.perftool.target import DuneTarget k = make_kernel(domains, instructions, [loopy.GlobalArg("grad_a0", numpy.float64, shape=("argi_n", "dim")), loopy.GlobalArg("grad_a1", numpy.float64, shape=("argj_n", "dim")), loopy.GlobalArg("grad_c0", numpy.float64, shape=("dim")), loopy.ValueArg("dim", numpy.int32), loopy.ValueArg("q_n", numpy.int32), loopy.ValueArg("argi_n", numpy.int32), loopy.ValueArg("argj_n", numpy.int32)], temporary_variables=temporaries, target=DuneTarget()) k = preprocess_kernel(k) kernel = k # # Create the kernel # from loopy import make_kernel, preprocess_kernel, add_dtypes # kernel = make_kernel(domains, instructions, temporary_variables=temporaries, preambles=preambles, target=DuneTarget()) # import numpy # kernel = add_dtypes(kernel, dict(grad_a0=numpy.float64, grad_c0=numpy.float64)) # kernel = preprocess_kernel(kernel) # Return the actual code (might instead return kernels...) from loopy import generate_code return str(generate_code(kernel)[0]) def generate_localoperator(ufldata, operatorfile): form = ufldata.preprocessed_form operator_methods = [] # For the moment, I do assume that there is but one integral of each type. This might differ # if you use different quadrature orders for different terms. assert len(form.integrals()) == len(set(i.integral_type() for i in form.integrals())) # Reset the generation cache from dune.perftool.generation import delete_cache delete_cache() # Generate the necessary residual methods for integral in form.integrals(): body = generate_term(integrand=integral.integrand(), measure=integral.integral_type()) signature = measure_specific_details(integral.integral_type())["residual_signature"] operator_methods.append((signature, body)) # Generate the necessary jacobian methods from dune.perftool.options import get_option if get_option("numerical_jacobian"): operator_include("dune/pdelab/localoperator/defaultimp.hh") else: from ufl import derivative from ufl.algorithms import expand_derivatives jacform = expand_derivatives(derivative(form, form.coefficients()[0])) for integral in jacform.integrals(): body = generate_term(integrand=integral.integrand(), measure=integral.integral_type()) signature = measure_specific_details(integral.integral_type())["jacobian_signature"] operator_methods.append((signature, body)) # TODO: JacobianApply for matrix-free computations. # Manage includes and base classes that we always need operator_include('dune/pdelab/gridfunctionspace/gridfunctionspaceutilities.hh') operator_include('dune/pdelab/localoperator/idefault.hh') operator_include('dune/pdelab/localoperator/flags.hh') operator_include('dune/pdelab/localoperator/pattern.hh') operator_include('dune/geometry/quadraturerules.hh') base_class('Dune::PDELab::LocalOperatorDefaultFlags')