diff --git a/mmengine/structures/base_data_element.py b/mmengine/structures/base_data_element.py
index e26596470656ff6d5c657dd771282a9864eb96fe..865bececbfeee508c8d2559a7a210321f9d21b7f 100644
--- a/mmengine/structures/base_data_element.py
+++ b/mmengine/structures/base_data_element.py
@@ -46,27 +46,27 @@ class BaseDataElement:
     The attributes in ``BaseDataElement`` are divided into two parts,
     the ``metainfo`` and the ``data`` respectively.
 
-      - ``metainfo``: Usually contains the
-        information about the image such as filename,
-        image_shape, pad_shape, etc. The attributes can be accessed or
-        modified by dict-like or object-like operations, such as
-        ``.``(for data access and modification) , ``in``, ``del``,
-        ``pop(str)``, ``get(str)``, ``metainfo_keys()``,
-        ``metainfo_values()``, ``metainfo_items()``, ``set_metainfo()``(for
-        set or change key-value pairs in metainfo).
-
-      - ``data``: Annotations or model predictions are
-        stored. The attributes can be accessed or modified by
-        dict-like or object-like operations, such as
-        ``.`` , ``in``, ``del``, ``pop(str)`` ``get(str)``, ``keys()``,
-        ``values()``, ``items()``. Users can also apply tensor-like
-        methods to all obj:``torch.Tensor`` in the ``data_fileds``,
-        such as ``.cuda()``, ``.cpu()``, ``.numpy()``, , ``.to()``
-        ``to_tensor()``, ``.detach()``.
+        - ``metainfo``: Usually contains the
+          information about the image such as filename,
+          image_shape, pad_shape, etc. The attributes can be accessed or
+          modified by dict-like or object-like operations, such as
+          ``.`` (for data access and modification), ``in``, ``del``,
+          ``pop(str)``, ``get(str)``, ``metainfo_keys()``,
+          ``metainfo_values()``, ``metainfo_items()``, ``set_metainfo()`` (for
+          set or change key-value pairs in metainfo).
+
+        - ``data``: Annotations or model predictions are
+          stored. The attributes can be accessed or modified by
+          dict-like or object-like operations, such as
+          ``.``, ``in``, ``del``, ``pop(str)``, ``get(str)``, ``keys()``,
+          ``values()``, ``items()``. Users can also apply tensor-like
+          methods to all :obj:`torch.Tensor` in the ``data_fields``,
+          such as ``.cuda()``, ``.cpu()``, ``.numpy()``, ``.to()``,
+          ``to_tensor()``, ``.detach()``.
 
     Args:
         metainfo (dict, optional): A dict contains the meta information
-            of single image. such as ``dict(img_shape=(512, 512, 3),
+            of single image, such as ``dict(img_shape=(512, 512, 3),
             scale_factor=(1, 1, 1, 1))``. Defaults to None.
         kwargs (dict, optional): A dict contains annotations of single image or
             model predictions. Defaults to None.
@@ -82,46 +82,52 @@ class BaseDataElement:
         ...     metainfo=dict(img_id=img_id, img_shape=img_shape),
         ...     bboxes=bboxes, scores=scores)
         >>> gt_instances = BaseDataElement(
-        ...                    metainfo=dict(img_id=img_id,
-        ...                                  img_shape=(H, W)))
+        ...     metainfo=dict(img_id=img_id, img_shape=(640, 640)))
 
         >>> # new
-        >>> gt_instances1 = gt_instance.new(
-        ...                     metainfo=dict(img_id=1, img_shape=(640, 640)),
-        ...                     bboxes=torch.rand((5, 4)),
-        ...                     scores=torch.rand((5,)))
+        >>> gt_instances1 = gt_instances.new(
+        ...     metainfo=dict(img_id=1, img_shape=(640, 640)),
+        ...                   bboxes=torch.rand((5, 4)),
+        ...                   scores=torch.rand((5,)))
         >>> gt_instances2 = gt_instances1.new()
 
         >>> # add and process property
         >>> gt_instances = BaseDataElement()
-        >>> gt_instances.set_metainfo(dict(img_id=9, img_shape=(100, 100))
+        >>> gt_instances.set_metainfo(dict(img_id=9, img_shape=(100, 100)))
         >>> assert 'img_shape' in gt_instances.metainfo_keys()
         >>> assert 'img_shape' in gt_instances
         >>> assert 'img_shape' not in gt_instances.keys()
         >>> assert 'img_shape' in gt_instances.all_keys()
         >>> print(gt_instances.img_shape)
+        (100, 100)
         >>> gt_instances.scores = torch.rand((5,))
         >>> assert 'scores' in gt_instances.keys()
         >>> assert 'scores' in gt_instances
         >>> assert 'scores' in gt_instances.all_keys()
         >>> assert 'scores' not in gt_instances.metainfo_keys()
         >>> print(gt_instances.scores)
+        tensor([0.5230, 0.7885, 0.2426, 0.3911, 0.4876])
         >>> gt_instances.bboxes = torch.rand((5, 4))
         >>> assert 'bboxes' in gt_instances.keys()
         >>> assert 'bboxes' in gt_instances
         >>> assert 'bboxes' in gt_instances.all_keys()
         >>> assert 'bboxes' not in gt_instances.metainfo_keys()
         >>> print(gt_instances.bboxes)
+        tensor([[0.0900, 0.0424, 0.1755, 0.4469],
+                [0.8648, 0.0592, 0.3484, 0.0913],
+                [0.5808, 0.1909, 0.6165, 0.7088],
+                [0.5490, 0.4209, 0.9416, 0.2374],
+                [0.3652, 0.1218, 0.8805, 0.7523]])
 
         >>> # delete and change property
         >>> gt_instances = BaseDataElement(
-        ...  metainfo=dict(img_id=0, img_shape=(640, 640)),
-        ...  bboxes=torch.rand((6, 4)), scores=torch.rand((6,)))
-        >>> gt_instances.img_shape = (1280, 1280)
+        ...     metainfo=dict(img_id=0, img_shape=(640, 640)),
+        ...     bboxes=torch.rand((6, 4)), scores=torch.rand((6,)))
+        >>> gt_instances.set_metainfo(dict(img_shape=(1280, 1280)))
         >>> gt_instances.img_shape  # (1280, 1280)
         >>> gt_instances.bboxes = gt_instances.bboxes * 2
-        >>> gt_instances.get('img_shape', None)  # (640, 640)
-        >>> gt_instances.get('bboxes', None)    # 6x4 tensor
+        >>> gt_instances.get('img_shape', None)  # (1280, 1280)
+        >>> gt_instances.get('bboxes', None)  # 6x4 tensor
         >>> del gt_instances.img_shape
         >>> del gt_instances.bboxes
         >>> assert 'img_shape' not in gt_instances
@@ -131,19 +137,19 @@ class BaseDataElement:
 
         >>> # Tensor-like
         >>> cuda_instances = gt_instances.cuda()
-        >>> cuda_instances = gt_instancess.to('cuda:0')
+        >>> cuda_instances = gt_instances.to('cuda:0')
         >>> cpu_instances = cuda_instances.cpu()
         >>> cpu_instances = cuda_instances.to('cpu')
         >>> fp16_instances = cuda_instances.to(
-        ...  device=None, dtype=torch.float16, non_blocking=False, copy=False,
-        ...  memory_format=torch.preserve_format)
+        ...     device=None, dtype=torch.float16, non_blocking=False,
+        ...     copy=False, memory_format=torch.preserve_format)
         >>> cpu_instances = cuda_instances.detach()
         >>> np_instances = cpu_instances.numpy()
 
         >>> # print
         >>> metainfo = dict(img_shape=(800, 1196, 3))
         >>> gt_instances = BaseDataElement(
-        >>>     metainfo=metainfo, det_labels=torch.LongTensor([0, 1, 2, 3]))
+        ...     metainfo=metainfo, det_labels=torch.LongTensor([0, 1, 2, 3]))
         >>> sample = BaseDataElement(metainfo=metainfo,
         ...                          gt_instances=gt_instances)
         >>> print(sample)
@@ -185,7 +191,7 @@ class BaseDataElement:
         ...         return self._pred_instances
         ...     @pred_instances.setter
         ...     def pred_instances(self, value):
-        ...         self.set_field(value,'_pred_instances',
+        ...         self.set_field(value, '_pred_instances',
         ...                        dtype=BaseDataElement)
         ...     @pred_instances.deleter
         ...     def pred_instances(self):
@@ -235,7 +241,7 @@ class BaseDataElement:
                 model predictions.
         """
         assert isinstance(data,
-                          dict), f'meta should be a `dict` but got {data}'
+                          dict), f'data should be a `dict` but got {data}'
         for k, v in data.items():
             # Use `setattr()` rather than `self.set_field` to allow `set_data`
             # to set property method.
@@ -247,7 +253,7 @@ class BaseDataElement:
 
         Args:
             instance (BaseDataElement): Another BaseDataElement object for
-            update the current object.
+                update the current object.
         """
         assert isinstance(
             instance, BaseDataElement
@@ -272,7 +278,7 @@ class BaseDataElement:
                 model predictions.
 
         Returns:
-            BaseDataElement: a new data element with same type.
+            BaseDataElement: A new data element with same type.
         """
         new_data = self.__class__()
 
@@ -290,7 +296,7 @@ class BaseDataElement:
         """Deep copy the current data element.
 
         Returns:
-            BaseDataElement: the copy of current data element.
+            BaseDataElement: The copy of current data element.
         """
         clone_data = self.__class__()
         clone_data.set_metainfo(dict(self.metainfo_items()))
@@ -342,7 +348,7 @@ class BaseDataElement:
     def all_items(self) -> Iterator[Tuple[str, Any]]:
         """
         Returns:
-            iterator: an iterator object whose element is (key, value) tuple
+            iterator: An iterator object whose element is (key, value) tuple
             pairs for ``metainfo`` and ``data``.
         """
         for k in self.all_keys():
@@ -351,7 +357,7 @@ class BaseDataElement:
     def items(self) -> Iterator[Tuple[str, Any]]:
         """
         Returns:
-            iterator: an iterator object whose element is (key, value) tuple
+            iterator: An iterator object whose element is (key, value) tuple
             pairs for ``data``.
         """
         for k in self.keys():
@@ -360,7 +366,7 @@ class BaseDataElement:
     def metainfo_items(self) -> Iterator[Tuple[str, Any]]:
         """
         Returns:
-            iterator: an iterator object whose element is (key, value) tuple
+            iterator: An iterator object whose element is (key, value) tuple
             pairs for ``metainfo``.
         """
         for k in self.metainfo_keys():
@@ -378,20 +384,20 @@ class BaseDataElement:
                 super().__setattr__(name, value)
             else:
                 raise AttributeError(f'{name} has been used as a '
-                                     'private attribute, which is immutable. ')
+                                     'private attribute, which is immutable.')
         else:
             self.set_field(
                 name=name, value=value, field_type='data', dtype=None)
 
     def __delattr__(self, item: str):
-        """delete the item in dataelement.
+        """Delete the item in dataelement.
 
         Args:
             item (str): The key to delete.
         """
         if item in ('_metainfo_fields', '_data_fields'):
             raise AttributeError(f'{item} has been used as a '
-                                 'private attribute, which is immutable. ')
+                                 'private attribute, which is immutable.')
         super().__delattr__(item)
         if item in self._metainfo_fields:
             self._metainfo_fields.remove(item)
@@ -402,13 +408,13 @@ class BaseDataElement:
     __delitem__ = __delattr__
 
     def get(self, key, default=None) -> Any:
-        """get property in data and metainfo as the same as python."""
+        """Get property in data and metainfo as the same as python."""
         # Use `getattr()` rather than `self.__dict__.get()` to allow getting
         # properties.
         return getattr(self, key, default)
 
     def pop(self, *args) -> Any:
-        """pop property in data and metainfo as the same as python."""
+        """Pop property in data and metainfo as the same as python."""
         assert len(args) < 3, '``pop`` get more than 2 arguments'
         name = args[0]
         if name in self._metainfo_fields:
@@ -459,7 +465,7 @@ class BaseDataElement:
                 raise AttributeError(
                     f'Cannot set {name} to be a field of data '
                     f'because {name} is already a metainfo field')
-            # The name only added to `data_fields`` when it is not the
+            # The name only added to `data_fields` when it is not the
             # attribute related to property(methods decorated by @property).
             if not isinstance(
                     getattr(type(self),
@@ -513,7 +519,7 @@ class BaseDataElement:
 
     # Tensor-like methods
     def numpy(self) -> 'BaseDataElement':
-        """Convert all tensor to np.narray in data."""
+        """Convert all tensors to np.ndarray in data."""
         new_data = self.new()
         for k, v in self.items():
             if isinstance(v, (torch.Tensor, BaseDataElement)):
@@ -523,7 +529,7 @@ class BaseDataElement:
         return new_data
 
     def to_tensor(self) -> 'BaseDataElement':
-        """Convert all np.narray to tensor in data."""
+        """Convert all np.ndarray to tensor in data."""
         new_data = self.new()
         for k, v in self.items():
             data = {}
@@ -544,7 +550,7 @@ class BaseDataElement:
         }
 
     def __repr__(self) -> str:
-        """represent the object."""
+        """Represent the object."""
 
         def _addindent(s_: str, num_spaces: int) -> str:
             """This func is modified from `pytorch` https://github.com/pytorch/
@@ -569,13 +575,13 @@ class BaseDataElement:
             return s  # type: ignore
 
         def dump(obj: Any) -> str:
-            """represent the object.
+            """Represent the object.
 
             Args:
                 obj (Any): The obj to represent.
 
             Returns:
-                str: The represented str .
+                str: The represented str.
             """
             _repr = ''
             if isinstance(obj, dict):