# Copyright (c) OpenMMLab. All rights reserved. import copy import os import os.path as osp import shutil import tempfile from unittest import TestCase import numpy as np import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from torch.optim import SGD, Adam from torch.utils.data import DataLoader, Dataset from mmengine.config import Config from mmengine.data import DefaultSampler from mmengine.evaluator import BaseMetric, Evaluator from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, Hook, IterTimerHook, LoggerHook, ParamSchedulerHook, RuntimeInfoHook) from mmengine.logging import LogProcessor, MessageHub, MMLogger from mmengine.model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor from mmengine.optim import (DefaultOptimWrapperConstructor, MultiStepLR, OptimWrapper, OptimWrapperDict, StepLR) from mmengine.registry import (DATASETS, EVALUATOR, HOOKS, LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIM_WRAPPER_CONSTRUCTORS, PARAM_SCHEDULERS, RUNNERS, Registry) from mmengine.runner import (BaseLoop, EpochBasedTrainLoop, IterBasedTrainLoop, Runner, TestLoop, ValLoop) from mmengine.runner.loops import _InfiniteDataloaderIterator from mmengine.runner.priority import Priority, get_priority from mmengine.utils import TORCH_VERSION, digit_version, is_list_of from mmengine.visualization import Visualizer @MODELS.register_module() class ToyModel(BaseModel): def __init__(self, data_preprocessor=None): super().__init__(data_preprocessor=data_preprocessor) self.linear1 = nn.Linear(2, 2) self.linear2 = nn.Linear(2, 1) def forward(self, batch_inputs, labels, mode='tensor'): labels = torch.stack(labels) outputs = self.linear1(batch_inputs) outputs = self.linear2(outputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs elif mode == 'predict': return outputs @MODELS.register_module() class ToyModel1(ToyModel): def __init__(self): super().__init__() @MODELS.register_module() class ToySyncBNModel(BaseModel): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, 8, 2) self.bn = nn.SyncBatchNorm(8) def forward(self, batch_inputs, labels, mode='tensor'): labels = torch.stack(labels) outputs = self.conv(batch_inputs) outputs = self.bn(outputs) if mode == 'tensor': return outputs elif mode == 'loss': loss = (labels - outputs).sum() outputs = dict(loss=loss) return outputs elif mode == 'predict': outputs = dict(log_vars=dict(a=1, b=0.5)) return outputs @MODELS.register_module() class ToyGANModel(BaseModel): def __init__(self): super().__init__() self.linear1 = nn.Linear(2, 1) self.linear2 = nn.Linear(2, 1) def forward(self, batch_inputs, labels, mode='tensor'): labels = torch.stack(labels) output1 = self.linear1(batch_inputs) output2 = self.linear2(batch_inputs) if mode == 'tensor': return output1, output2 elif mode == 'loss': loss1 = (labels - output1).sum() loss2 = (labels - output2).sum() outputs = dict(linear1=loss1, linear2=loss2) return outputs elif mode == 'predict': return output1, output2 def train_step(self, data, optim_wrapper): batch_inputs, batch_labels = self.data_preprocessor(data) loss = self(batch_inputs, batch_labels, mode='loss') optim_wrapper['linear1'].update_params(loss['linear1']) optim_wrapper['linear2'].update_params(loss['linear2']) return loss @MODEL_WRAPPERS.register_module() class CustomModelWrapper(nn.Module): def __init__(self, module): super().__init__() self.model = module @OPTIM_WRAPPER_CONSTRUCTORS.register_module() class ToyMultipleOptimizerConstructor: def __init__(self, optim_wrapper_cfg, paramwise_cfg=None): if not isinstance(optim_wrapper_cfg, dict): raise TypeError('optimizer_cfg should be a dict', f'but got {type(optim_wrapper_cfg)}') assert paramwise_cfg is None, ( 'parawise_cfg should be set in each optimizer separately') self.optim_wrapper_cfg = optim_wrapper_cfg self.constructors = {} for key, cfg in self.optim_wrapper_cfg.items(): _cfg = cfg.copy() paramwise_cfg_ = _cfg.pop('paramwise_cfg', None) self.constructors[key] = DefaultOptimWrapperConstructor( _cfg, paramwise_cfg_) def __call__(self, model: nn.Module) -> OptimWrapperDict: optimizers = {} while hasattr(model, 'module'): model = model.module for key, constructor in self.constructors.items(): module = getattr(model, key) optimizers[key] = constructor(module) return OptimWrapperDict(**optimizers) @DATASETS.register_module() class ToyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) @property def metainfo(self): return self.METAINFO def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) @DATASETS.register_module() class ToyDatasetNoMeta(Dataset): data = torch.randn(12, 2) label = torch.ones(12) def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) @METRICS.register_module() class ToyMetric1(BaseMetric): def __init__(self, collect_device='cpu', dummy_metrics=None): super().__init__(collect_device=collect_device) self.dummy_metrics = dummy_metrics def process(self, data_samples, predictions): result = {'acc': 1} self.results.append(result) def compute_metrics(self, results): return dict(acc=1) @METRICS.register_module() class ToyMetric2(BaseMetric): def __init__(self, collect_device='cpu', dummy_metrics=None): super().__init__(collect_device=collect_device) self.dummy_metrics = dummy_metrics def process(self, data_samples, predictions): result = {'acc': 1} self.results.append(result) def compute_metrics(self, results): return dict(acc=1) @HOOKS.register_module() class ToyHook(Hook): priority = 'Lowest' def before_train_epoch(self, runner): pass @HOOKS.register_module() class ToyHook2(Hook): priority = 'Lowest' def after_train_epoch(self, runner): pass @LOOPS.register_module() class CustomTrainLoop(BaseLoop): def __init__(self, runner, dataloader, max_epochs): super().__init__(runner, dataloader) self._max_epochs = max_epochs def run(self) -> None: pass @LOOPS.register_module() class CustomValLoop(BaseLoop): def __init__(self, runner, dataloader, evaluator): super().__init__(runner, dataloader) self._runner = runner if isinstance(evaluator, dict) or is_list_of(evaluator, dict): self.evaluator = runner.build_evaluator(evaluator) # type: ignore else: self.evaluator = evaluator def run(self) -> None: pass @LOOPS.register_module() class CustomTestLoop(BaseLoop): def __init__(self, runner, dataloader, evaluator): super().__init__(runner, dataloader) self._runner = runner if isinstance(evaluator, dict) or is_list_of(evaluator, dict): self.evaluator = runner.build_evaluator(evaluator) # type: ignore else: self.evaluator = evaluator def run(self) -> None: pass @LOG_PROCESSORS.register_module() class CustomLogProcessor(LogProcessor): def __init__(self, window_size=10, by_epoch=True, custom_cfg=None): self.window_size = window_size self.by_epoch = by_epoch self.custom_cfg = custom_cfg if custom_cfg else [] self._check_custom_cfg() @RUNNERS.register_module() class CustomRunner(Runner): def __init__(self, model, work_dir, train_dataloader=None, val_dataloader=None, test_dataloader=None, train_cfg=None, val_cfg=None, test_cfg=None, auto_scale_lr=None, optim_wrapper=None, param_scheduler=None, val_evaluator=None, test_evaluator=None, default_hooks=None, custom_hooks=None, data_preprocessor=None, load_from=None, resume=False, launcher='none', env_cfg=dict(dist_cfg=dict(backend='nccl')), log_processor=None, log_level='INFO', visualizer=None, default_scope=None, randomness=dict(seed=None), experiment_name=None, cfg=None): pass def setup_env(self, env_cfg): pass @EVALUATOR.register_module() class ToyEvaluator(Evaluator): def __init__(self, metrics): super().__init__(metrics) def collate_fn(data_batch): return data_batch class TestRunner(TestCase): def setUp(self): self.temp_dir = tempfile.mkdtemp() epoch_based_cfg = dict( model=dict(type='ToyModel'), work_dir=self.temp_dir, train_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), test_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), auto_scale_lr=dict(base_batch_size=16, enable=False), optim_wrapper=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]), val_evaluator=dict(type='ToyMetric1'), test_evaluator=dict(type='ToyMetric1'), train_cfg=dict( by_epoch=True, max_epochs=3, val_interval=1, val_begin=1), val_cfg=dict(), test_cfg=dict(), custom_hooks=[], default_hooks=dict( runtime_info=dict(type='RuntimeInfoHook'), timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict( type='CheckpointHook', interval=1, by_epoch=True), sampler_seed=dict(type='DistSamplerSeedHook')), data_preprocessor=None, launcher='none', env_cfg=dict(dist_cfg=dict(backend='nccl')), ) self.epoch_based_cfg = Config(epoch_based_cfg) self.iter_based_cfg = copy.deepcopy(self.epoch_based_cfg) self.iter_based_cfg.train_dataloader = dict( dataset=dict(type='ToyDataset'), sampler=dict(type='InfiniteSampler', shuffle=True), batch_size=3, num_workers=0) self.iter_based_cfg.train_cfg = dict(by_epoch=False, max_iters=12) self.iter_based_cfg.default_hooks = dict( runtime_info=dict(type='RuntimeInfoHook'), timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1, by_epoch=False), sampler_seed=dict(type='DistSamplerSeedHook')) def tearDown(self): shutil.rmtree(self.temp_dir) def test_init(self): # 1. test arguments # 1.1 train_dataloader, train_cfg, optimizer and param_scheduler cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init1' cfg.pop('train_cfg') with self.assertRaisesRegex(ValueError, 'either all None or not None'): Runner(**cfg) # all of training related configs are None and param_scheduler should # also be None cfg.experiment_name = 'test_init2' cfg.pop('train_dataloader') cfg.pop('optim_wrapper') cfg.pop('param_scheduler') runner = Runner(**cfg) self.assertIsInstance(runner, Runner) # all of training related configs are not None cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init3' runner = Runner(**cfg) self.assertIsInstance(runner, Runner) # all of training related configs are not None and param_scheduler # can be None cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init4' cfg.pop('param_scheduler') runner = Runner(**cfg) self.assertIsInstance(runner, Runner) self.assertEqual(runner.param_schedulers, None) # param_scheduler should be None when optimizer is None cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init5' cfg.pop('train_cfg') cfg.pop('train_dataloader') cfg.pop('optim_wrapper') with self.assertRaisesRegex(ValueError, 'should be None'): runner = Runner(**cfg) # 1.2 val_dataloader, val_evaluator, val_cfg cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init6' cfg.pop('val_cfg') with self.assertRaisesRegex(ValueError, 'either all None or not None'): Runner(**cfg) cfg.experiment_name = 'test_init7' cfg.pop('val_dataloader') cfg.pop('val_evaluator') runner = Runner(**cfg) self.assertIsInstance(runner, Runner) cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init8' runner = Runner(**cfg) self.assertIsInstance(runner, Runner) # 1.3 test_dataloader, test_evaluator and test_cfg cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init9' cfg.pop('test_cfg') with self.assertRaisesRegex(ValueError, 'either all None or not None'): runner = Runner(**cfg) cfg.experiment_name = 'test_init10' cfg.pop('test_dataloader') cfg.pop('test_evaluator') runner = Runner(**cfg) self.assertIsInstance(runner, Runner) # 1.4 test env params cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init11' runner = Runner(**cfg) self.assertFalse(runner.distributed) self.assertFalse(runner.deterministic) # 1.5 message_hub, logger and visualizer # they are all not specified cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init12' runner = Runner(**cfg) self.assertIsInstance(runner.logger, MMLogger) self.assertIsInstance(runner.message_hub, MessageHub) self.assertIsInstance(runner.visualizer, Visualizer) # they are all specified cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init13' cfg.log_level = 'INFO' cfg.visualizer = None runner = Runner(**cfg) self.assertIsInstance(runner.logger, MMLogger) self.assertIsInstance(runner.message_hub, MessageHub) self.assertIsInstance(runner.visualizer, Visualizer) assert runner.distributed is False assert runner.seed is not None assert runner.work_dir == self.temp_dir # 2 model should be initialized self.assertIsInstance(runner.model, (nn.Module, DistributedDataParallel)) self.assertEqual(runner.model_name, 'ToyModel') # 3. test lazy initialization self.assertIsInstance(runner._train_dataloader, dict) self.assertIsInstance(runner._val_dataloader, dict) self.assertIsInstance(runner._test_dataloader, dict) self.assertIsInstance(runner.optim_wrapper, dict) self.assertIsInstance(runner.param_schedulers, dict) # After calling runner.train(), # train_dataloader and val_loader should be initialized but # test_dataloader should also be dict runner.train() self.assertIsInstance(runner._train_loop, BaseLoop) self.assertIsInstance(runner.train_dataloader, DataLoader) self.assertIsInstance(runner.optim_wrapper, OptimWrapper) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) self.assertIsInstance(runner._val_loop, BaseLoop) self.assertIsInstance(runner._val_loop.dataloader, DataLoader) self.assertIsInstance(runner._val_loop.evaluator, Evaluator) # After calling runner.test(), test_dataloader should be initialized self.assertIsInstance(runner._test_loop, dict) runner.test() self.assertIsInstance(runner._test_loop, BaseLoop) self.assertIsInstance(runner._test_loop.dataloader, DataLoader) self.assertIsInstance(runner._test_loop.evaluator, Evaluator) # 4. initialize runner with objects rather than config model = ToyModel() optim_wrapper = OptimWrapper(SGD( model.parameters(), lr=0.01, )) toy_hook = ToyHook() toy_hook2 = ToyHook2() train_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn) val_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn) test_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn) runner = Runner( model=model, work_dir=self.temp_dir, train_cfg=dict( by_epoch=True, max_epochs=3, val_interval=1, val_begin=1), train_dataloader=train_dataloader, optim_wrapper=optim_wrapper, param_scheduler=MultiStepLR(optim_wrapper, milestones=[1, 2]), val_cfg=dict(), val_dataloader=val_dataloader, val_evaluator=ToyMetric1(), test_cfg=dict(), test_dataloader=test_dataloader, test_evaluator=ToyMetric1(), default_hooks=dict(param_scheduler=toy_hook), custom_hooks=[toy_hook2], experiment_name='test_init14') runner.train() runner.test() # 5. Test building multiple runners if torch.cuda.is_available(): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init15' cfg.launcher = 'pytorch' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29600' os.environ['RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['LOCAL_RANK'] = '0' runner = Runner(**cfg) cfg.experiment_name = 'test_init16' runner = Runner(**cfg) # 6.1 Test initializing with empty scheduler. cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_init17' cfg.param_scheduler = None runner = Runner(**cfg) self.assertIsNone(runner.param_schedulers) # 6.2 Test initializing single scheduler. cfg.experiment_name = 'test_init18' cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2]) Runner(**cfg) # 6.3 Test initializing list of scheduler. cfg.param_scheduler = [ dict(type='MultiStepLR', milestones=[1, 2]), dict(type='MultiStepLR', milestones=[2, 3]) ] cfg.experiment_name = 'test_init19' Runner(**cfg) # 6.4 Test initializing 2 schedulers for 2 optimizers. cfg.param_scheduler = dict( linear1=dict(type='MultiStepLR', milestones=[1, 2]), linear2=dict(type='MultiStepLR', milestones=[1, 2]), ) cfg.experiment_name = 'test_init20' Runner(**cfg) # 6.5 Test initializing 2 schedulers for 2 optimizers. cfg.param_scheduler = dict( linear1=[dict(type='MultiStepLR', milestones=[1, 2])], linear2=[dict(type='MultiStepLR', milestones=[1, 2])], ) cfg.experiment_name = 'test_init21' Runner(**cfg) # 6.6 Test initializing with `_ParameterScheduler`. optimizer = SGD(nn.Linear(1, 1).parameters(), lr=0.1) cfg.param_scheduler = MultiStepLR( milestones=[1, 2], optimizer=optimizer) cfg.experiment_name = 'test_init22' Runner(**cfg) # 6.7 Test initializing with list of `_ParameterScheduler`. cfg.param_scheduler = [ MultiStepLR(milestones=[1, 2], optimizer=optimizer) ] cfg.experiment_name = 'test_init23' Runner(**cfg) # 6.8 Test initializing with 2 `_ParameterScheduler` for 2 optimizers. cfg.param_scheduler = dict( linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer), linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer)) cfg.experiment_name = 'test_init24' Runner(**cfg) # 6.9 Test initializing with 2 list of `_ParameterScheduler` for 2 # optimizers. cfg.param_scheduler = dict( linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)], linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)]) cfg.experiment_name = 'test_init25' Runner(**cfg) # 6.10 Test initializing with error type scheduler. cfg.param_scheduler = dict(linear1='error_type') cfg.experiment_name = 'test_init26' with self.assertRaisesRegex(AssertionError, 'Each value of'): Runner(**cfg) cfg.param_scheduler = 'error_type' cfg.experiment_name = 'test_init27' with self.assertRaisesRegex(TypeError, '`param_scheduler` should be a'): Runner(**cfg) def test_dump_config(self): # dump config from dict. cfg = copy.deepcopy(self.epoch_based_cfg) for idx, cfg in enumerate((cfg, cfg._cfg_dict)): cfg.experiment_name = f'test_dump{idx}' runner = Runner.from_cfg(cfg=cfg) assert osp.exists( osp.join(runner.work_dir, f'{runner.timestamp}.py')) # dump config from file. with tempfile.TemporaryDirectory() as temp_config_dir: temp_config_file = tempfile.NamedTemporaryFile( dir=temp_config_dir, suffix='.py') file_cfg = Config( self.epoch_based_cfg._cfg_dict, filename=temp_config_file.name) file_cfg.experiment_name = f'test_dump2{idx}' runner = Runner.from_cfg(cfg=file_cfg) assert osp.exists( osp.join(runner.work_dir, osp.basename(temp_config_file.name))) def test_from_cfg(self): runner = Runner.from_cfg(cfg=self.epoch_based_cfg) self.assertIsInstance(runner, Runner) def test_setup_env(self): # TODO pass def test_build_logger(self): self.epoch_based_cfg.experiment_name = 'test_build_logger1' runner = Runner.from_cfg(self.epoch_based_cfg) self.assertIsInstance(runner.logger, MMLogger) self.assertEqual(runner.experiment_name, runner.logger.instance_name) # input is a dict logger = runner.build_logger(name='test_build_logger2') self.assertIsInstance(logger, MMLogger) self.assertEqual(logger.instance_name, 'test_build_logger2') # input is a dict but does not contain name key runner._experiment_name = 'test_build_logger3' logger = runner.build_logger() self.assertIsInstance(logger, MMLogger) self.assertEqual(logger.instance_name, 'test_build_logger3') def test_build_message_hub(self): self.epoch_based_cfg.experiment_name = 'test_build_message_hub1' runner = Runner.from_cfg(self.epoch_based_cfg) self.assertIsInstance(runner.message_hub, MessageHub) self.assertEqual(runner.message_hub.instance_name, runner.experiment_name) # input is a dict message_hub_cfg = dict(name='test_build_message_hub2') message_hub = runner.build_message_hub(message_hub_cfg) self.assertIsInstance(message_hub, MessageHub) self.assertEqual(message_hub.instance_name, 'test_build_message_hub2') # input is a dict but does not contain name key runner._experiment_name = 'test_build_message_hub3' message_hub_cfg = dict() message_hub = runner.build_message_hub(message_hub_cfg) self.assertIsInstance(message_hub, MessageHub) self.assertEqual(message_hub.instance_name, 'test_build_message_hub3') # input is not a valid type with self.assertRaisesRegex(TypeError, 'message_hub should be'): runner.build_message_hub('invalid-type') def test_build_visualizer(self): self.epoch_based_cfg.experiment_name = 'test_build_visualizer1' runner = Runner.from_cfg(self.epoch_based_cfg) self.assertIsInstance(runner.visualizer, Visualizer) self.assertEqual(runner.experiment_name, runner.visualizer.instance_name) # input is a Visualizer object self.assertEqual( id(runner.build_visualizer(runner.visualizer)), id(runner.visualizer)) # input is a dict visualizer_cfg = dict(type='Visualizer', name='test_build_visualizer2') visualizer = runner.build_visualizer(visualizer_cfg) self.assertIsInstance(visualizer, Visualizer) self.assertEqual(visualizer.instance_name, 'test_build_visualizer2') # input is a dict but does not contain name key runner._experiment_name = 'test_build_visualizer3' visualizer_cfg = None visualizer = runner.build_visualizer(visualizer_cfg) self.assertIsInstance(visualizer, Visualizer) self.assertEqual(visualizer.instance_name, 'test_build_visualizer3') # input is not a valid type with self.assertRaisesRegex(TypeError, 'visualizer should be'): runner.build_visualizer('invalid-type') def test_default_scope(self): TOY_SCHEDULERS = Registry( 'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy') @TOY_SCHEDULERS.register_module() class ToyScheduler(MultiStepLR): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.epoch_based_cfg.param_scheduler = dict( type='ToyScheduler', milestones=[1, 2]) self.epoch_based_cfg.default_scope = 'toy' cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_default_scope' runner = Runner.from_cfg(cfg) runner.train() self.assertIsInstance(runner.param_schedulers[0], ToyScheduler) def test_build_model(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_model' runner = Runner.from_cfg(cfg) self.assertIsInstance(runner.model, ToyModel) self.assertIsInstance(runner.model.data_preprocessor, BaseDataPreprocessor) cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_data_preprocessor' cfg.data_preprocessor = dict(type='ImgDataPreprocessor') runner = Runner.from_cfg(cfg) # data_preprocessor is passed to used if no `data_preprocessor` # in model config. self.assertIsInstance(runner.model.data_preprocessor, ImgDataPreprocessor) # input should be a nn.Module object or dict with self.assertRaisesRegex(TypeError, 'model should be'): runner.build_model('invalid-type') # input is a nn.Module object _model = ToyModel1() model = runner.build_model(_model) self.assertEqual(id(model), id(_model)) # input is a dict model = runner.build_model(dict(type='ToyModel1')) self.assertIsInstance(model, ToyModel1) def test_wrap_model(self): # revert sync batchnorm cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_revert_syncbn' cfg.model = dict(type='ToySyncBNModel') runner = Runner.from_cfg(cfg) self.assertIsInstance(runner.model, BaseModel) assert not isinstance(runner.model.bn, nn.SyncBatchNorm) # custom model wrapper cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_wrap_model' cfg.model_wrapper_cfg = dict(type='CustomModelWrapper') runner = Runner.from_cfg(cfg) self.assertIsInstance(runner.model, BaseModel) if torch.cuda.is_available(): os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29515' os.environ['RANK'] = str(0) os.environ['WORLD_SIZE'] = str(1) cfg.launcher = 'pytorch' cfg.experiment_name = 'test_wrap_model1' runner = Runner.from_cfg(cfg) self.assertIsInstance(runner.model, CustomModelWrapper) def test_scale_lr(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_scale_lr' runner = Runner.from_cfg(cfg) # When no base_batch_size in auto_scale_lr, an # assertion error will raise. auto_scale_lr = dict(enable=True) optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01)) with self.assertRaises(AssertionError): runner.scale_lr(optim_wrapper, auto_scale_lr) # When auto_scale_lr is None or enable is False, the lr will # not be linearly scaled. auto_scale_lr = dict(base_batch_size=16, enable=False) optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01)) runner.scale_lr(optim_wrapper) self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'], 0.01) runner.scale_lr(optim_wrapper, auto_scale_lr) self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'], 0.01) # When auto_scale_lr is correct and enable is True, the lr will # be linearly scaled. auto_scale_lr = dict(base_batch_size=16, enable=True) real_bs = runner.world_size * cfg.train_dataloader['batch_size'] optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01)) runner.scale_lr(optim_wrapper, auto_scale_lr) self.assertEqual(optim_wrapper.optimizer.param_groups[0]['lr'], 0.01 * (real_bs / 16)) # Test when optim_wrapper is an OptimWrapperDict optim_wrapper = OptimWrapper(SGD(runner.model.parameters(), lr=0.01)) wrapper_dict = OptimWrapperDict(wrapper=optim_wrapper) runner.scale_lr(wrapper_dict, auto_scale_lr) scaled_lr = wrapper_dict['wrapper'].optimizer.param_groups[0]['lr'] self.assertEqual(scaled_lr, 0.01 * (real_bs / 16)) def test_build_optim_wrapper(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_optim_wrapper' runner = Runner.from_cfg(cfg) # input should be an Optimizer object or dict with self.assertRaisesRegex(TypeError, 'optimizer wrapper should be'): runner.build_optim_wrapper('invalid-type') # 1. test one optimizer # 1.1 input is an Optimizer object optimizer = SGD(runner.model.parameters(), lr=0.01) optim_wrapper = OptimWrapper(optimizer) optim_wrapper = runner.build_optim_wrapper(optim_wrapper) self.assertEqual(id(optimizer), id(optim_wrapper.optimizer)) # 1.2 input is a dict optim_wrapper = runner.build_optim_wrapper( dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01))) self.assertIsInstance(optim_wrapper, OptimWrapper) # 1.3 use default OptimWrapper type. optim_wrapper = runner.build_optim_wrapper( dict(optimizer=dict(type='SGD', lr=0.01))) self.assertIsInstance(optim_wrapper, OptimWrapper) # 2. test multiple optmizers # 2.1 input is a dict which contains multiple optimizer objects optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01) optim_wrapper1 = OptimWrapper(optimizer1) optimizer2 = Adam(runner.model.linear2.parameters(), lr=0.02) optim_wrapper2 = OptimWrapper(optimizer2) optim_wrapper_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2) optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) self.assertIsInstance(optim_wrapper, OptimWrapperDict) self.assertIsInstance(optim_wrapper['key1'].optimizer, SGD) self.assertIsInstance(optim_wrapper['key2'].optimizer, Adam) # 2.2 each item mush be an optimizer object when "type" and # "constructor" are not in optimizer optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01) optim_wrapper1 = OptimWrapper(optimizer1) optim_wrapper2 = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.01)) optim_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2) with self.assertRaisesRegex(ValueError, 'each item mush be an optimizer object'): runner.build_optim_wrapper(optim_cfg) # 2.3 input is a dict which contains multiple configs optim_wrapper_cfg = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), constructor='ToyMultipleOptimizerConstructor') optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) self.assertIsInstance(optim_wrapper, OptimWrapperDict) self.assertIsInstance(optim_wrapper['linear1'].optimizer, SGD) self.assertIsInstance(optim_wrapper['linear2'].optimizer, Adam) def test_build_param_scheduler(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_param_scheduler' runner = Runner.from_cfg(cfg) # `build_optim_wrapper` should be called before # `build_param_scheduler` cfg = dict(type='MultiStepLR', milestones=[1, 2]) runner.optim_wrapper = dict( key1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), key2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), ) with self.assertRaisesRegex(AssertionError, 'should be called before'): runner.build_param_scheduler(cfg) runner.optim_wrapper = runner.build_optim_wrapper( dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01))) param_schedulers = runner.build_param_scheduler(cfg) self.assertIsInstance(param_schedulers, list) self.assertEqual(len(param_schedulers), 1) self.assertIsInstance(param_schedulers[0], MultiStepLR) # 1. test one optimizer and one parameter scheduler # 1.1 input is a ParamScheduler object param_scheduler = MultiStepLR(runner.optim_wrapper, milestones=[1, 2]) param_schedulers = runner.build_param_scheduler(param_scheduler) self.assertEqual(len(param_schedulers), 1) self.assertEqual(id(param_schedulers[0]), id(param_scheduler)) # 1.2 input is a dict param_schedulers = runner.build_param_scheduler(param_scheduler) self.assertEqual(len(param_schedulers), 1) self.assertIsInstance(param_schedulers[0], MultiStepLR) # 2. test one optimizer and list of parameter schedulers # 2.1 input is a list of dict cfg = [ dict(type='MultiStepLR', milestones=[1, 2]), dict(type='StepLR', step_size=1) ] param_schedulers = runner.build_param_scheduler(cfg) self.assertEqual(len(param_schedulers), 2) self.assertIsInstance(param_schedulers[0], MultiStepLR) self.assertIsInstance(param_schedulers[1], StepLR) # 2.2 input is a list and some items are ParamScheduler objects cfg = [param_scheduler, dict(type='StepLR', step_size=1)] param_schedulers = runner.build_param_scheduler(cfg) self.assertEqual(len(param_schedulers), 2) self.assertIsInstance(param_schedulers[0], MultiStepLR) self.assertIsInstance(param_schedulers[1], StepLR) # 3. test multiple optimizers and list of parameter schedulers optimizer1 = SGD(runner.model.linear1.parameters(), lr=0.01) optim_wrapper1 = OptimWrapper(optimizer1) optimizer2 = Adam(runner.model.linear2.parameters(), lr=0.02) optim_wrapper2 = OptimWrapper(optimizer2) optim_wrapper_cfg = dict(key1=optim_wrapper1, key2=optim_wrapper2) runner.optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) cfg = [ dict(type='MultiStepLR', milestones=[1, 2]), dict(type='StepLR', step_size=1) ] param_schedulers = runner.build_param_scheduler(cfg) print(param_schedulers) self.assertIsInstance(param_schedulers, dict) self.assertEqual(len(param_schedulers), 2) self.assertEqual(len(param_schedulers['key1']), 2) self.assertEqual(len(param_schedulers['key2']), 2) # 4. test multiple optimizers and multiple parameter shceduers cfg = dict( key1=dict(type='MultiStepLR', milestones=[1, 2]), key2=[ dict(type='MultiStepLR', milestones=[1, 2]), dict(type='StepLR', step_size=1) ]) param_schedulers = runner.build_param_scheduler(cfg) self.assertIsInstance(param_schedulers, dict) self.assertEqual(len(param_schedulers), 2) self.assertEqual(len(param_schedulers['key1']), 1) self.assertEqual(len(param_schedulers['key2']), 2) # 5. test converting epoch-based scheduler to iter-based runner.optim_wrapper = runner.build_optim_wrapper( dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01))) # 5.1 train loop should be built before converting scheduler cfg = dict( type='MultiStepLR', milestones=[1, 2], convert_to_iter_based=True) # 5.2 convert epoch-based to iter-based scheduler cfg = dict( type='MultiStepLR', milestones=[1, 2], begin=1, end=7, convert_to_iter_based=True) runner._train_loop = runner.build_train_loop(runner.train_loop) param_schedulers = runner.build_param_scheduler(cfg) self.assertFalse(param_schedulers[0].by_epoch) self.assertEqual(param_schedulers[0].begin, 4) self.assertEqual(param_schedulers[0].end, 28) # 6. test set default end of schedulers cfg = dict(type='MultiStepLR', milestones=[1, 2], begin=1) param_schedulers = runner.build_param_scheduler(cfg) self.assertTrue(param_schedulers[0].by_epoch) self.assertEqual(param_schedulers[0].begin, 1) # runner.max_epochs = 3 self.assertEqual(param_schedulers[0].end, 3) cfg = dict( type='MultiStepLR', milestones=[1, 2], begin=1, convert_to_iter_based=True) param_schedulers = runner.build_param_scheduler(cfg) self.assertFalse(param_schedulers[0].by_epoch) self.assertEqual(param_schedulers[0].begin, 4) # runner.max_iters = 3*4 self.assertEqual(param_schedulers[0].end, 12) def test_build_evaluator(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_evaluator' runner = Runner.from_cfg(cfg) # input is a BaseEvaluator or ComposedEvaluator object evaluator = Evaluator(ToyMetric1()) self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator)) evaluator = Evaluator([ToyMetric1(), ToyMetric2()]) self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator)) # input is a dict evaluator = dict(type='ToyMetric1') self.assertIsInstance(runner.build_evaluator(evaluator), Evaluator) # input is a list of dict evaluator = [dict(type='ToyMetric1'), dict(type='ToyMetric2')] self.assertIsInstance(runner.build_evaluator(evaluator), Evaluator) # test collect device evaluator = [ dict(type='ToyMetric1', collect_device='cpu'), dict(type='ToyMetric2', collect_device='gpu') ] _evaluator = runner.build_evaluator(evaluator) self.assertEqual(_evaluator.metrics[0].collect_device, 'cpu') self.assertEqual(_evaluator.metrics[1].collect_device, 'gpu') # test build a customize evaluator evaluator = dict( type='ToyEvaluator', metrics=[ dict(type='ToyMetric1', collect_device='cpu'), dict(type='ToyMetric2', collect_device='gpu') ]) _evaluator = runner.build_evaluator(evaluator) self.assertIsInstance(runner.build_evaluator(evaluator), ToyEvaluator) self.assertEqual(_evaluator.metrics[0].collect_device, 'cpu') self.assertEqual(_evaluator.metrics[1].collect_device, 'gpu') def test_build_dataloader(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_dataloader' runner = Runner.from_cfg(cfg) cfg = dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=1, num_workers=0) seed = np.random.randint(2**31) dataloader = runner.build_dataloader(cfg, seed=seed) self.assertIsInstance(dataloader, DataLoader) self.assertIsInstance(dataloader.dataset, ToyDataset) self.assertIsInstance(dataloader.sampler, DefaultSampler) self.assertEqual(dataloader.sampler.seed, seed) # diff_rank_seed is True dataloader = runner.build_dataloader( cfg, seed=seed, diff_rank_seed=True) self.assertNotEqual(dataloader.sampler.seed, seed) def test_build_train_loop(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_train_loop' runner = Runner.from_cfg(cfg) # input should be a Loop object or dict with self.assertRaisesRegex(TypeError, 'should be'): runner.build_train_loop('invalid-type') # Only one of type or by_epoch can exist in cfg cfg = dict(type='EpochBasedTrainLoop', by_epoch=True, max_epochs=3) with self.assertRaisesRegex(RuntimeError, 'Only one'): runner.build_train_loop(cfg) # input is a dict and contains type key cfg = dict(type='EpochBasedTrainLoop', max_epochs=3) loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, EpochBasedTrainLoop) cfg = dict(type='IterBasedTrainLoop', max_iters=3) loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, IterBasedTrainLoop) # input is a dict and does not contain type key cfg = dict(by_epoch=True, max_epochs=3) loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, EpochBasedTrainLoop) cfg = dict(by_epoch=False, max_iters=3) loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, IterBasedTrainLoop) # input is a Loop object self.assertEqual(id(runner.build_train_loop(loop)), id(loop)) # param_schedulers can be None cfg = dict(type='EpochBasedTrainLoop', max_epochs=3) runner.param_schedulers = None loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, EpochBasedTrainLoop) # test custom training loop cfg = dict(type='CustomTrainLoop', max_epochs=3) loop = runner.build_train_loop(cfg) self.assertIsInstance(loop, CustomTrainLoop) def test_build_val_loop(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_val_loop' runner = Runner.from_cfg(cfg) # input should be a Loop object or dict with self.assertRaisesRegex(TypeError, 'should be'): runner.build_test_loop('invalid-type') # input is a dict and contains type key cfg = dict(type='ValLoop') loop = runner.build_test_loop(cfg) self.assertIsInstance(loop, ValLoop) # input is a dict but does not contain type key cfg = dict() loop = runner.build_val_loop(cfg) self.assertIsInstance(loop, ValLoop) # input is a Loop object self.assertEqual(id(runner.build_val_loop(loop)), id(loop)) # test custom validation loop cfg = dict(type='CustomValLoop') loop = runner.build_val_loop(cfg) self.assertIsInstance(loop, CustomValLoop) def test_build_test_loop(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_test_loop' runner = Runner.from_cfg(cfg) # input should be a Loop object or dict with self.assertRaisesRegex(TypeError, 'should be'): runner.build_test_loop('invalid-type') # input is a dict and contains type key cfg = dict(type='TestLoop') loop = runner.build_test_loop(cfg) self.assertIsInstance(loop, TestLoop) # input is a dict but does not contain type key cfg = dict() loop = runner.build_test_loop(cfg) self.assertIsInstance(loop, TestLoop) # input is a Loop object self.assertEqual(id(runner.build_test_loop(loop)), id(loop)) # test custom validation loop cfg = dict(type='CustomTestLoop') loop = runner.build_val_loop(cfg) self.assertIsInstance(loop, CustomTestLoop) def test_build_log_processor(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_log_processor' runner = Runner.from_cfg(cfg) # input should be a LogProcessor object or dict with self.assertRaisesRegex(TypeError, 'should be'): runner.build_log_processor('invalid-type') # input is a dict and contains type key cfg = dict(type='LogProcessor') log_processor = runner.build_log_processor(cfg) self.assertIsInstance(log_processor, LogProcessor) # input is a dict but does not contain type key cfg = dict() log_processor = runner.build_log_processor(cfg) self.assertIsInstance(log_processor, LogProcessor) # input is a LogProcessor object self.assertEqual( id(runner.build_log_processor(log_processor)), id(log_processor)) # test custom validation log_processor cfg = dict(type='CustomLogProcessor') log_processor = runner.build_log_processor(cfg) self.assertIsInstance(log_processor, CustomLogProcessor) def test_train(self): # 1. test `self.train_loop` is None cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train1' cfg.pop('train_dataloader') cfg.pop('train_cfg') cfg.pop('optim_wrapper') cfg.pop('param_scheduler') runner = Runner.from_cfg(cfg) with self.assertRaisesRegex(RuntimeError, 'should not be None'): runner.train() # 2. test iter and epoch counter of EpochBasedTrainLoop and timing of # running ValLoop epoch_results = [] epoch_targets = [i for i in range(3)] iter_results = [] iter_targets = [i for i in range(4 * 3)] batch_idx_results = [] batch_idx_targets = [i for i in range(4)] * 3 # train and val val_epoch_results = [] val_epoch_targets = [i for i in range(2, 4)] @HOOKS.register_module() class TestEpochHook(Hook): def before_train_epoch(self, runner): epoch_results.append(runner.epoch) def before_train_iter(self, runner, batch_idx, data_batch=None): iter_results.append(runner.iter) batch_idx_results.append(batch_idx) def before_val_epoch(self, runner): val_epoch_results.append(runner.epoch) cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train2' cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)] cfg.train_cfg = dict(by_epoch=True, max_epochs=3, val_begin=2) runner = Runner.from_cfg(cfg) runner.train() self.assertEqual(runner.optim_wrapper._inner_count, 12) self.assertEqual(runner.optim_wrapper._max_counts, 12) assert isinstance(runner.train_loop, EpochBasedTrainLoop) for result, target, in zip(epoch_results, epoch_targets): self.assertEqual(result, target) for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(batch_idx_results, batch_idx_targets): self.assertEqual(result, target) for result, target, in zip(val_epoch_results, val_epoch_targets): self.assertEqual(result, target) # 3. test iter and epoch counter of IterBasedTrainLoop and timing of # running ValLoop epoch_results = [] iter_results = [] batch_idx_results = [] val_iter_results = [] val_batch_idx_results = [] iter_targets = [i for i in range(12)] batch_idx_targets = [i for i in range(12)] val_iter_targets = [i for i in range(4, 12)] val_batch_idx_targets = [i for i in range(4)] * 2 @HOOKS.register_module() class TestIterHook(Hook): def before_train_epoch(self, runner): epoch_results.append(runner.epoch) def before_train_iter(self, runner, batch_idx, data_batch=None): iter_results.append(runner.iter) batch_idx_results.append(batch_idx) def before_val_iter(self, runner, batch_idx, data_batch=None): val_epoch_results.append(runner.iter) val_batch_idx_results.append(batch_idx) cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_train3' cfg.custom_hooks = [dict(type='TestIterHook', priority=50)] cfg.train_cfg = dict( by_epoch=False, max_iters=12, val_interval=4, val_begin=4) runner = Runner.from_cfg(cfg) runner.train() self.assertEqual(runner.optim_wrapper._inner_count, 12) self.assertEqual(runner.optim_wrapper._max_counts, 12) assert isinstance(runner.train_loop, IterBasedTrainLoop) self.assertEqual(len(epoch_results), 1) self.assertEqual(epoch_results[0], 0) self.assertEqual(runner.val_interval, 4) self.assertEqual(runner.val_begin, 4) for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(batch_idx_results, batch_idx_targets): self.assertEqual(result, target) for result, target, in zip(val_iter_results, val_iter_targets): self.assertEqual(result, target) for result, target, in zip(val_batch_idx_results, val_batch_idx_targets): self.assertEqual(result, target) # 4. test iter and epoch counter of IterBasedTrainLoop and timing of # running ValLoop without InfiniteSampler epoch_results = [] iter_results = [] batch_idx_results = [] val_iter_results = [] val_batch_idx_results = [] iter_targets = [i for i in range(12)] batch_idx_targets = [i for i in range(12)] val_iter_targets = [i for i in range(4, 12)] val_batch_idx_targets = [i for i in range(4)] * 2 cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_train4' cfg.train_dataloader.sampler = dict( type='DefaultSampler', shuffle=True) cfg.custom_hooks = [dict(type='TestIterHook', priority=50)] cfg.train_cfg = dict( by_epoch=False, max_iters=12, val_interval=4, val_begin=4) runner = Runner.from_cfg(cfg) with self.assertWarnsRegex( Warning, 'Reach the end of the dataloader, it will be restarted and ' 'continue to iterate.'): runner.train() assert isinstance(runner.train_loop, IterBasedTrainLoop) assert isinstance(runner.train_loop.dataloader_iterator, _InfiniteDataloaderIterator) self.assertEqual(len(epoch_results), 1) self.assertEqual(epoch_results[0], 0) self.assertEqual(runner.val_interval, 4) self.assertEqual(runner.val_begin, 4) for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(batch_idx_results, batch_idx_targets): self.assertEqual(result, target) for result, target, in zip(val_iter_results, val_iter_targets): self.assertEqual(result, target) for result, target, in zip(val_batch_idx_results, val_batch_idx_targets): self.assertEqual(result, target) # 5. test dynamic interval in IterBasedTrainLoop max_iters = 12 interval = 5 dynamic_intervals = [(11, 2)] iter_results = [] iter_targets = [5, 10, 12] val_interval_results = [] val_interval_targets = [5] * 10 + [2] * 2 @HOOKS.register_module() class TestIterDynamicIntervalHook(Hook): def before_val(self, runner): iter_results.append(runner.iter) def before_train_iter(self, runner, batch_idx, data_batch=None): val_interval_results.append(runner.train_loop.val_interval) cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_train5' cfg.train_dataloader.sampler = dict( type='DefaultSampler', shuffle=True) cfg.custom_hooks = [ dict(type='TestIterDynamicIntervalHook', priority=50) ] cfg.train_cfg = dict( by_epoch=False, max_iters=max_iters, val_interval=interval, dynamic_intervals=dynamic_intervals) runner = Runner.from_cfg(cfg) runner.train() for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(val_interval_results, val_interval_targets): self.assertEqual(result, target) # 6. test dynamic interval in EpochBasedTrainLoop max_epochs = 12 interval = 5 dynamic_intervals = [(11, 2)] epoch_results = [] epoch_targets = [5, 10, 12] val_interval_results = [] val_interval_targets = [5] * 10 + [2] * 2 @HOOKS.register_module() class TestEpochDynamicIntervalHook(Hook): def before_val_epoch(self, runner): epoch_results.append(runner.epoch) def before_train_epoch(self, runner): val_interval_results.append(runner.train_loop.val_interval) cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train6' cfg.train_dataloader.sampler = dict( type='DefaultSampler', shuffle=True) cfg.custom_hooks = [ dict(type='TestEpochDynamicIntervalHook', priority=50) ] cfg.train_cfg = dict( by_epoch=True, max_epochs=max_epochs, val_interval=interval, dynamic_intervals=dynamic_intervals) runner = Runner.from_cfg(cfg) runner.train() for result, target, in zip(epoch_results, epoch_targets): self.assertEqual(result, target) for result, target, in zip(val_interval_results, val_interval_targets): self.assertEqual(result, target) # 7. test init weights @MODELS.register_module() class ToyModel2(ToyModel): def __init__(self): super().__init__() self.initiailzed = False def init_weights(self): self.initiailzed = True cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train7' runner = Runner.from_cfg(cfg) model = ToyModel2() runner.model = model runner.train() self.assertTrue(model.initiailzed) # 8.1 test train with multiple optimizer and single list of schedulers. cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train8' cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2]) cfg.optim_wrapper = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), constructor='ToyMultipleOptimizerConstructor') cfg.model = dict(type='ToyGANModel') runner = runner.from_cfg(cfg) runner.train() # 8.1 Test train with multiple optimizer and single schedulers. cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_train8.1.1' cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2]) cfg.optim_wrapper = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), constructor='ToyMultipleOptimizerConstructor') cfg.model = dict(type='ToyGANModel') runner = runner.from_cfg(cfg) runner.train() # Test list like single scheduler. cfg.experiment_name = 'test_train8.1.2' cfg.param_scheduler = [dict(type='MultiStepLR', milestones=[1, 2])] runner = runner.from_cfg(cfg) runner.train() # 8.2 Test train with multiple optimizer and multiple schedulers. cfg.experiment_name = 'test_train8.2.1' cfg.param_scheduler = dict( linear1=dict(type='MultiStepLR', milestones=[1, 2]), linear2=dict(type='MultiStepLR', milestones=[1, 2]), ) runner = runner.from_cfg(cfg) runner.train() cfg.experiment_name = 'test_train8.2.2' cfg.param_scheduler = dict( linear1=[dict(type='MultiStepLR', milestones=[1, 2])], linear2=[dict(type='MultiStepLR', milestones=[1, 2])], ) runner = runner.from_cfg(cfg) runner.train() # 9 Test training with a dataset without metainfo cfg.experiment_name = 'test_train9' cfg = copy.deepcopy(cfg) cfg.train_dataloader.dataset = dict(type='ToyDatasetNoMeta') runner = runner.from_cfg(cfg) runner.train() def test_val(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_val1' cfg.pop('val_dataloader') cfg.pop('val_cfg') cfg.pop('val_evaluator') runner = Runner.from_cfg(cfg) with self.assertRaisesRegex(RuntimeError, 'should not be None'): runner.val() cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_val2' runner = Runner.from_cfg(cfg) runner.val() # test run val without train and test components cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_individually_val' cfg.pop('train_dataloader') cfg.pop('train_cfg') cfg.pop('optim_wrapper') cfg.pop('param_scheduler') cfg.pop('test_dataloader') cfg.pop('test_cfg') cfg.pop('test_evaluator') runner = Runner.from_cfg(cfg) # Test default fp32 `autocast` context. predictions = [] def get_outputs_callback(module, inputs, outputs): predictions.append(outputs) runner.model.register_forward_hook(get_outputs_callback) runner.val() self.assertEqual(predictions[0].dtype, torch.float32) predictions.clear() # Test fp16 `autocast` context. cfg.experiment_name = 'test_val3' cfg.val_cfg = dict(fp16=True) runner = Runner.from_cfg(cfg) runner.model.register_forward_hook(get_outputs_callback) if (digit_version(TORCH_VERSION) < digit_version('1.10.0') and not torch.cuda.is_available()): with self.assertRaisesRegex(RuntimeError, 'If pytorch versions'): runner.val() else: runner.val() self.assertIn(predictions[0].dtype, (torch.float16, torch.bfloat16)) def test_test(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_test1' cfg.pop('test_dataloader') cfg.pop('test_cfg') cfg.pop('test_evaluator') runner = Runner.from_cfg(cfg) with self.assertRaisesRegex(RuntimeError, 'should not be None'): runner.test() cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_test2' runner = Runner.from_cfg(cfg) runner.test() # Test run test without building train loop. self.assertIsInstance(runner._train_loop, dict) # test run test without train and test components cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_individually_test' cfg.pop('train_dataloader') cfg.pop('train_cfg') cfg.pop('optim_wrapper') cfg.pop('param_scheduler') cfg.pop('val_dataloader') cfg.pop('val_cfg') cfg.pop('val_evaluator') runner = Runner.from_cfg(cfg) # Test default fp32 `autocast` context. predictions = [] def get_outputs_callback(module, inputs, outputs): predictions.append(outputs) runner.model.register_forward_hook(get_outputs_callback) runner.test() self.assertEqual(predictions[0].dtype, torch.float32) predictions.clear() # Test fp16 `autocast` context. cfg.experiment_name = 'test_val3' cfg.test_cfg = dict(fp16=True) runner = Runner.from_cfg(cfg) runner.model.register_forward_hook(get_outputs_callback) if (digit_version(TORCH_VERSION) < digit_version('1.10.0') and not torch.cuda.is_available()): with self.assertRaisesRegex(RuntimeError, 'If pytorch versions'): runner.test() else: runner.test() self.assertIn(predictions[0].dtype, (torch.float16, torch.bfloat16)) def test_register_hook(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_register_hook' runner = Runner.from_cfg(cfg) runner._hooks = [] # 1. test `hook` parameter # 1.1 `hook` should be either a Hook object or dict with self.assertRaisesRegex( TypeError, 'hook should be an instance of Hook or dict'): runner.register_hook(['string']) # 1.2 `hook` is a dict timer_cfg = dict(type='IterTimerHook') runner.register_hook(timer_cfg) self.assertEqual(len(runner._hooks), 1) self.assertTrue(isinstance(runner._hooks[0], IterTimerHook)) # default priority of `IterTimerHook` is 'NORMAL' self.assertEqual( get_priority(runner._hooks[0].priority), get_priority('NORMAL')) runner._hooks = [] # 1.2.1 `hook` is a dict and contains `priority` field # set the priority of `IterTimerHook` as 'BELOW_NORMAL' timer_cfg = dict(type='IterTimerHook', priority='BELOW_NORMAL') runner.register_hook(timer_cfg) self.assertEqual(len(runner._hooks), 1) self.assertTrue(isinstance(runner._hooks[0], IterTimerHook)) self.assertEqual( get_priority(runner._hooks[0].priority), get_priority('BELOW_NORMAL')) # 1.3 `hook` is a hook object runtime_info_hook = RuntimeInfoHook() runner.register_hook(runtime_info_hook) self.assertEqual(len(runner._hooks), 2) # The priority of `runtime_info_hook` is `HIGH` which is greater than # `IterTimerHook`, so the first item of `_hooks` should be # `runtime_info_hook` self.assertTrue(isinstance(runner._hooks[0], RuntimeInfoHook)) self.assertEqual( get_priority(runner._hooks[0].priority), get_priority('VERY_HIGH')) # 2. test `priority` parameter # `priority` argument is not None and it will be set as priority of # hook param_scheduler_cfg = dict(type='ParamSchedulerHook', priority='LOW') runner.register_hook(param_scheduler_cfg, priority='VERY_LOW') self.assertEqual(len(runner._hooks), 3) self.assertTrue(isinstance(runner._hooks[2], ParamSchedulerHook)) self.assertEqual( get_priority(runner._hooks[2].priority), get_priority('VERY_LOW')) # `priority` is Priority logger_cfg = dict(type='LoggerHook', priority='BELOW_NORMAL') runner.register_hook(logger_cfg, priority=Priority.VERY_LOW) self.assertEqual(len(runner._hooks), 4) self.assertTrue(isinstance(runner._hooks[3], LoggerHook)) self.assertEqual( get_priority(runner._hooks[3].priority), get_priority('VERY_LOW')) def test_default_hooks(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_default_hooks' runner = Runner.from_cfg(cfg) runner._hooks = [] # register 7 hooks by default runner.register_default_hooks() self.assertEqual(len(runner._hooks), 6) # the third registered hook should be `DistSamplerSeedHook` self.assertTrue(isinstance(runner._hooks[2], DistSamplerSeedHook)) # the fifth registered hook should be `ParamSchedulerHook` self.assertTrue(isinstance(runner._hooks[4], ParamSchedulerHook)) runner._hooks = [] # remove `ParamSchedulerHook` from default hooks runner.register_default_hooks(hooks=dict(timer=None)) self.assertEqual(len(runner._hooks), 5) # `ParamSchedulerHook` was popped so the fifth is `CheckpointHook` self.assertTrue(isinstance(runner._hooks[4], CheckpointHook)) # add a new default hook runner._hooks = [] runner.register_default_hooks(hooks=dict(ToyHook=dict(type='ToyHook'))) self.assertEqual(len(runner._hooks), 7) self.assertTrue(isinstance(runner._hooks[6], ToyHook)) def test_custom_hooks(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_custom_hooks' runner = Runner.from_cfg(cfg) self.assertEqual(len(runner._hooks), 6) custom_hooks = [dict(type='ToyHook')] runner.register_custom_hooks(custom_hooks) self.assertEqual(len(runner._hooks), 7) self.assertTrue(isinstance(runner._hooks[6], ToyHook)) def test_register_hooks(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_register_hooks' runner = Runner.from_cfg(cfg) runner._hooks = [] custom_hooks = [dict(type='ToyHook')] runner.register_hooks(custom_hooks=custom_hooks) # six default hooks + custom hook (ToyHook) self.assertEqual(len(runner._hooks), 7) self.assertTrue(isinstance(runner._hooks[6], ToyHook)) def test_custom_loop(self): # test custom loop with additional hook @LOOPS.register_module() class CustomTrainLoop2(IterBasedTrainLoop): """Custom train loop with additional warmup stage.""" def __init__(self, runner, dataloader, max_iters, warmup_loader, max_warmup_iters): super().__init__( runner=runner, dataloader=dataloader, max_iters=max_iters) self.warmup_loader = self.runner.build_dataloader( warmup_loader) self.max_warmup_iters = max_warmup_iters def run(self): self.runner.call_hook('before_train') self.runner.cur_dataloader = self.warmup_loader for idx, data_batch in enumerate(self.warmup_loader, 1): self.warmup_iter(data_batch) if idx == self.max_warmup_iters: break self.runner.cur_dataloader = self.warmup_loader self.runner.call_hook('before_train_epoch') while self.runner.iter < self._max_iters: data_batch = next(self.dataloader_iterator) self.run_iter(data_batch) self.runner.call_hook('after_train_epoch') self.runner.call_hook('after_train') def warmup_iter(self, data_batch): self.runner.call_hook( 'before_warmup_iter', data_batch=data_batch) train_logs = self.runner.model.train_step( data_batch, self.runner.optim_wrapper) self.runner.message_hub.update_info('train_logs', train_logs) self.runner.call_hook( 'after_warmup_iter', data_batch=data_batch) before_warmup_iter_results = [] after_warmup_iter_results = [] @HOOKS.register_module() class TestWarmupHook(Hook): """test custom train loop.""" def before_warmup_iter(self, runner, data_batch=None): before_warmup_iter_results.append('before') def after_warmup_iter(self, runner, data_batch=None, outputs=None): after_warmup_iter_results.append('after') self.iter_based_cfg.train_cfg = dict( type='CustomTrainLoop2', max_iters=10, warmup_loader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='InfiniteSampler', shuffle=True), batch_size=1, num_workers=0), max_warmup_iters=5) self.iter_based_cfg.custom_hooks = [ dict(type='TestWarmupHook', priority=50) ] self.iter_based_cfg.experiment_name = 'test_custom_loop' runner = Runner.from_cfg(self.iter_based_cfg) runner.train() self.assertIsInstance(runner.train_loop, CustomTrainLoop2) # test custom hook triggered as expected self.assertEqual(len(before_warmup_iter_results), 5) self.assertEqual(len(after_warmup_iter_results), 5) for before, after in zip(before_warmup_iter_results, after_warmup_iter_results): self.assertEqual(before, 'before') self.assertEqual(after, 'after') def test_checkpoint(self): # 1. test epoch based cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint1' runner = Runner.from_cfg(cfg) runner.train() # 1.1 test `save_checkpoint` which is called by `CheckpointHook` path = osp.join(self.temp_dir, 'epoch_3.pth') self.assertTrue(osp.exists(path)) self.assertFalse(osp.exists(osp.join(self.temp_dir, 'epoch_4.pth'))) ckpt = torch.load(path) self.assertEqual(ckpt['meta']['epoch'], 3) self.assertEqual(ckpt['meta']['iter'], 12) self.assertEqual(ckpt['meta']['dataset_meta'], runner.train_dataloader.dataset.metainfo) self.assertEqual(ckpt['meta']['experiment_name'], runner.experiment_name) self.assertEqual(ckpt['meta']['seed'], runner.seed) assert isinstance(ckpt['optimizer'], dict) assert isinstance(ckpt['param_schedulers'], list) self.assertIsInstance(ckpt['message_hub'], dict) message_hub = MessageHub.get_instance('test_ckpt') message_hub.load_state_dict(ckpt['message_hub']) self.assertEqual(message_hub.get_info('epoch'), 2) self.assertEqual(message_hub.get_info('iter'), 11) # 1.2 test `load_checkpoint` cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint2' cfg.optim_wrapper = dict(type='SGD', lr=0.2) cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3]) runner = Runner.from_cfg(cfg) runner.load_checkpoint(path) self.assertEqual(runner.epoch, 0) self.assertEqual(runner.iter, 0) self.assertTrue(runner._has_loaded) # load checkpoint will not initialize optimizer and param_schedulers # objects self.assertIsInstance(runner.optim_wrapper, dict) self.assertIsInstance(runner.param_schedulers, dict) # 1.3.1 test `resume` cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint3' cfg.optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.2)) cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3]) runner = Runner.from_cfg(cfg) runner.resume(path) self.assertEqual(runner.epoch, 3) self.assertEqual(runner.iter, 12) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertEqual(runner.optim_wrapper.param_groups[0]['lr'], 0.0001) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) self.assertEqual(runner.param_schedulers[0].milestones, {1: 1, 2: 1}) self.assertIsInstance(runner.message_hub, MessageHub) self.assertEqual(runner.message_hub.get_info('epoch'), 2) self.assertEqual(runner.message_hub.get_info('iter'), 11) self.assertEqual(MessageHub.get_current_instance().get_info('epoch'), 2) self.assertEqual(MessageHub.get_current_instance().get_info('iter'), 11) # 1.3.2 test resume with unmatched dataset_meta ckpt_modified = copy.deepcopy(ckpt) ckpt_modified['meta']['dataset_meta'] = {'CLASSES': ['cat', 'dog']} # ckpt_modified['meta']['seed'] = 123 path_modified = osp.join(self.temp_dir, 'modified.pth') torch.save(ckpt_modified, path_modified) with self.assertWarnsRegex( Warning, 'The dataset metainfo from the resumed checkpoint is ' 'different from the current training dataset, please ' 'check the correctness of the checkpoint or the training ' 'dataset.'): runner.resume(path_modified) # 1.3.3 test resume with unmatched seed ckpt_modified = copy.deepcopy(ckpt) ckpt_modified['meta']['seed'] = 123 path_modified = osp.join(self.temp_dir, 'modified.pth') torch.save(ckpt_modified, path_modified) with self.assertWarnsRegex( Warning, 'The value of random seed in the checkpoint'): runner.resume(path_modified) # 1.3.3 test resume with no seed and dataset meta ckpt_modified = copy.deepcopy(ckpt) ckpt_modified['meta'].pop('seed') ckpt_modified['meta'].pop('dataset_meta') path_modified = osp.join(self.temp_dir, 'modified.pth') torch.save(ckpt_modified, path_modified) runner.resume(path_modified) # 1.4 test auto resume cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint4' cfg.resume = True runner = Runner.from_cfg(cfg) runner.load_or_resume() self.assertEqual(runner.epoch, 3) self.assertEqual(runner.iter, 12) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) # 1.5 test resume from a specified checkpoint cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint5' cfg.resume = True cfg.load_from = osp.join(self.temp_dir, 'epoch_1.pth') runner = Runner.from_cfg(cfg) runner.load_or_resume() self.assertEqual(runner.epoch, 1) self.assertEqual(runner.iter, 4) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) # 1.6 multiple optimizers cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint6' cfg.optim_wrapper = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), constructor='ToyMultipleOptimizerConstructor') cfg.model = dict(type='ToyGANModel') # disable OptimizerHook because it only works with one optimizer runner = Runner.from_cfg(cfg) runner.train() path = osp.join(self.temp_dir, 'epoch_3.pth') self.assertTrue(osp.exists(path)) self.assertEqual(runner.optim_wrapper['linear1'].param_groups[0]['lr'], 0.0001) self.assertIsInstance(runner.optim_wrapper['linear2'].optimizer, Adam) self.assertEqual(runner.optim_wrapper['linear2'].param_groups[0]['lr'], 0.0002) cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint7' cfg.optim_wrapper = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.2)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.03)), constructor='ToyMultipleOptimizerConstructor') cfg.model = dict(type='ToyGANModel') cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3]) runner = Runner.from_cfg(cfg) runner.resume(path) self.assertIsInstance(runner.optim_wrapper, OptimWrapperDict) self.assertIsInstance(runner.optim_wrapper['linear1'].optimizer, SGD) self.assertEqual(runner.optim_wrapper['linear1'].param_groups[0]['lr'], 0.0001) self.assertIsInstance(runner.optim_wrapper['linear2'].optimizer, Adam) self.assertEqual(runner.optim_wrapper['linear2'].param_groups[0]['lr'], 0.0002) self.assertIsInstance(runner.param_schedulers, dict) self.assertEqual(len(runner.param_schedulers['linear1']), 1) self.assertIsInstance(runner.param_schedulers['linear1'][0], MultiStepLR) self.assertEqual(runner.param_schedulers['linear1'][0].milestones, { 1: 1, 2: 1 }) self.assertEqual(len(runner.param_schedulers['linear2']), 1) self.assertIsInstance(runner.param_schedulers['linear2'][0], MultiStepLR) self.assertEqual(runner.param_schedulers['linear2'][0].milestones, { 1: 1, 2: 1 }) # 2. test iter based cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint8' runner = Runner.from_cfg(cfg) runner.train() # 2.1 test `save_checkpoint` which is called by `CheckpointHook` path = osp.join(self.temp_dir, 'iter_12.pth') self.assertTrue(osp.exists(path)) self.assertFalse(osp.exists(osp.join(self.temp_dir, 'epoch_13.pth'))) ckpt = torch.load(path) self.assertEqual(ckpt['meta']['epoch'], 0) self.assertEqual(ckpt['meta']['iter'], 12) assert isinstance(ckpt['optimizer'], dict) assert isinstance(ckpt['param_schedulers'], list) self.assertIsInstance(ckpt['message_hub'], dict) message_hub.load_state_dict(ckpt['message_hub']) self.assertEqual(message_hub.get_info('epoch'), 0) self.assertEqual(message_hub.get_info('iter'), 11) # 2.2 test `load_checkpoint` cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint9' runner = Runner.from_cfg(cfg) runner.load_checkpoint(path) self.assertEqual(runner.epoch, 0) self.assertEqual(runner.iter, 0) self.assertTrue(runner._has_loaded) # 2.3 test `resume` cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint10' runner = Runner.from_cfg(cfg) runner.resume(path) self.assertEqual(runner.epoch, 0) self.assertEqual(runner.iter, 12) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) self.assertEqual(runner.message_hub.get_info('epoch'), 0) self.assertEqual(runner.message_hub.get_info('iter'), 11) # 2.4 test auto resume cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint11' cfg.resume = True runner = Runner.from_cfg(cfg) runner.load_or_resume() self.assertEqual(runner.epoch, 0) self.assertEqual(runner.iter, 12) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) # 2.5 test resume from a specified checkpoint cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint12' cfg.resume = True cfg.load_from = osp.join(self.temp_dir, 'iter_3.pth') runner = Runner.from_cfg(cfg) runner.load_or_resume() self.assertEqual(runner.epoch, 0) self.assertEqual(runner.iter, 3) self.assertTrue(runner._has_loaded) self.assertIsInstance(runner.optim_wrapper.optimizer, SGD) self.assertIsInstance(runner.param_schedulers[0], MultiStepLR) # 2.6 test resumed message_hub has the history value. cfg = copy.deepcopy(self.iter_based_cfg) cfg.experiment_name = 'test_checkpoint13' cfg.resume = True cfg.load_from = osp.join(self.temp_dir, 'iter_3.pth') runner = Runner.from_cfg(cfg) runner.load_or_resume() assert len(runner.message_hub.log_scalars['train/lr'].data[1]) == 3 assert len(MessageHub.get_current_instance().log_scalars['train/lr']. data[1]) == 3 # 2.7.1 test `resume` 2 optimizers and 1 scheduler list. path = osp.join(self.temp_dir, 'epoch_3.pth') optim_cfg = dict( linear1=dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01)), linear2=dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.02)), constructor='ToyMultipleOptimizerConstructor') cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint14' cfg.optim_wrapper = optim_cfg cfg.param_scheduler = dict(type='MultiStepLR', milestones=[1, 2, 3]) cfg.model = dict(type='ToyGANModel') resumed_cfg = copy.deepcopy(cfg) runner = Runner.from_cfg(cfg) runner.train() resumed_cfg.experiment_name = 'test_checkpoint15' runner = Runner.from_cfg(resumed_cfg) runner.resume(path) self.assertEqual(len(runner.param_schedulers['linear1']), 1) self.assertEqual(len(runner.param_schedulers['linear2']), 1) self.assertIsInstance(runner.param_schedulers['linear1'][0], MultiStepLR) self.assertIsInstance(runner.param_schedulers['linear2'][0], MultiStepLR) # 2.7.2 test `resume` 2 optimizers and 2 scheduler list. cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint16' cfg.optim_wrapper = optim_cfg cfg.param_scheduler = dict( linear1=dict(type='MultiStepLR', milestones=[1, 2, 3]), linear2=dict(type='StepLR', gamma=0.1, step_size=3)) cfg.model = dict(type='ToyGANModel') resumed_cfg = copy.deepcopy(cfg) runner = Runner.from_cfg(cfg) runner.train() resumed_cfg.experiment_name = 'test_checkpoint17' runner = Runner.from_cfg(resumed_cfg) runner.resume(path) self.assertEqual(len(runner.param_schedulers['linear1']), 1) self.assertEqual(len(runner.param_schedulers['linear2']), 1) self.assertIsInstance(runner.param_schedulers['linear1'][0], MultiStepLR) self.assertIsInstance(runner.param_schedulers['linear2'][0], StepLR) # 2.7.3 test `resume` 2 optimizers and 0 sheduler list. cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_checkpoint18' cfg.optim_wrapper = optim_cfg cfg.model = dict(type='ToyGANModel') cfg.param_scheduler = None resumed_cfg = copy.deepcopy(cfg) runner = Runner.from_cfg(cfg) runner.train() resumed_cfg.experiment_name = 'test_checkpoint19' runner = Runner.from_cfg(resumed_cfg) runner.resume(path) self.assertIsNone(runner.param_schedulers) def test_build_runner(self): # No need to test other cases which have been tested in # `test_build_from_cfg` # test custom runner cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_runner1' cfg.runner_type = 'CustomRunner' assert isinstance(RUNNERS.build(cfg), CustomRunner) # test default runner cfg = copy.deepcopy(self.epoch_based_cfg) cfg.experiment_name = 'test_build_runner2' assert isinstance(RUNNERS.build(cfg), Runner)