# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import Any, Iterator, Optional, Tuple import numpy as np import torch class BaseDataElement: """A base data structure interface of OpenMMlab. Data elements refer to predicted results or ground truth labels on a task, such as predicted bboxes, instance masks, semantic segmentation masks, etc. Because groundtruth labels and predicted results often have similar properties (for example, the predicted bboxes and the groundtruth bboxes), MMEngine uses the same abstract data interface to encapsulate predicted results and groundtruth labels, and it is recommended to use different name conventions to distinguish them, such as using ``gt_instances`` and ``pred_instances`` to distinguish between labels and predicted results. Additionally, we distinguish data elements at instance level, pixel level, and label level. Each of these types has its own characteristics. Therefore, MMEngine defines the base class ``BaseDataElement``, and implement ``InstanceData``, ``PixelData``, and ``LabelData`` inheriting from ``BaseDataElement`` to represent different types of ground truth labels or predictions. They are used as interfaces between different commopenets. The attributes in ``BaseDataElement`` are divided into two parts, the ``metainfo`` and the ``data`` respectively. - ``metainfo``: Usually contains the information about the image such as filename, image_shape, pad_shape, etc. The attributes can be accessed or modified by dict-like or object-like operations, such as ``.``(for data access and modification) , ``in``, ``del``, ``pop(str)``, ``get(str)``, ``metainfo_keys()``, ``metainfo_values()``, ``metainfo_items()``, ``set_metainfo()``(for set or change key-value pairs in metainfo). - ``data``: Annotations or model predictions are stored. The attributes can be accessed or modified by dict-like or object-like operations, such as ``.`` , ``in``, ``del``, ``pop(str)`` ``get(str)``, ``data_keys()``, ``data_values()``, ``data_items()``. Users can also apply tensor-like methods to all obj:``torch.Tensor`` in the ``data_fileds``, such as ``.cuda()``, ``.cpu()``, ``.numpy()``, , ``.to()`` ``to_tensor()``, ``.detach()``, ``.numpy()`` Args: meta_info (dict, optional): A dict contains the meta information of single image. such as ``dict(img_shape=(512, 512, 3), scale_factor=(1, 1, 1, 1))``. Defaults to None. data (dict, optional): A dict contains annotations of single image or model predictions. Defaults to None. Examples: >>> from mmengine.data import BaseDataElement >>> gt_instances = BaseDataElement() >>> bboxes = torch.rand((5, 4)) >>> scores = torch.rand((5,)) >>> img_id = 0 >>> img_shape = (800, 1333) >>> gt_instances = BaseDataElement( metainfo=dict(img_id=img_id, img_shape=img_shape), data=dict(bboxes=bboxes, scores=scores)) >>> gt_instances = BaseDataElement(dict(img_id=img_id, img_shape=(H, W))) # new >>> gt_instances1 = gt_instance.new( metainfo=dict(img_id=1, img_shape=(640, 640)), data=dict(bboxes=torch.rand((5, 4)), scores=torch.rand((5,)))) >>> gt_instances2 = gt_instances1.new() # add and process property >>> gt_instances = BaseDataElement() >>> gt_instances.set_metainfo(dict(img_id=9, img_shape=(100, 100)) >>> assert 'img_shape' in gt_instances.metainfo_keys() >>> assert 'img_shape' in gt_instances >>> assert 'img_shape' not in gt_instances.data_keys() >>> assert 'img_shape' in gt_instances.keys() >>> print(gt_instances.img_shape) >>> gt_instances.scores = torch.rand((5,)) >>> assert 'scores' in gt_instances.data_keys() >>> assert 'scores' in gt_instances >>> assert 'scores' in gt_instances.keys() >>> assert 'scores' not in gt_instances.metainfo_keys() >>> print(gt_instances.scores) >>> gt_instances.bboxes = torch.rand((5, 4)) >>> assert 'bboxes' in gt_instances.data_keys() >>> assert 'bboxes' in gt_instances >>> assert 'bboxes' in gt_instances.keys() >>> assert 'bboxes' not in gt_instances.metainfo_keys() >>> print(gt_instances.bboxes) # delete and change property >>> gt_instances = BaseDataElement( metainfo=dict(img_id=0, img_shape=(640, 640)), data=dict(bboxes=torch.rand((6, 4)), scores=torch.rand((6,)))) >>> gt_instances.img_shape = (1280, 1280) >>> gt_instances.img_shape # (1280, 1280) >>> gt_instances.bboxes = gt_instances.bboxes * 2 >>> gt_instances.get('img_shape', None) # (640, 640) >>> gt_instances.get('bboxes', None) # 6x4 tensor >>> del gt_instances.img_shape >>> del gt_instances.bboxes >>> assert 'img_shape' not in gt_instances >>> assert 'bboxes' not in gt_instances >>> gt_instances.pop('img_shape', None) # None >>> gt_instances.pop('bboxes', None) # None # Tensor-like >>> cuda_instances = gt_instances.cuda() >>> cuda_instances = gt_instancess.to('cuda:0') >>> cpu_instances = cuda_instances.cpu() >>> cpu_instances = cuda_instances.to('cpu') >>> fp16_instances = cuda_instances.to( device=None, dtype=torch.float16, non_blocking=False, copy=False, memory_format=torch.preserve_format) >>> cpu_instances = cuda_instances.detach() >>> np_instances = cpu_instances.numpy() # print >>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3)) >>> instance_data = BaseDataElement(metainfo=img_meta) >>> instance_data.det_labels = torch.LongTensor([0, 1, 2, 3]) >>> instance_data.det_scores = torch.Tensor([0.01, 0.1, 0.2, 0.3]) >>> print(results) <BaseDataElement( META INFORMATION img_shape: (800, 1196, 3) pad_shape: (800, 1216, 3) DATA FIELDS shape of det_labels: torch.Size([4]) shape of det_scores: torch.Size([4]) ) at 0x7f84acd10f90> """ def __init__(self, metainfo: Optional[dict] = None, data: Optional[dict] = None) -> None: self._metainfo_fields: set = set() self._data_fields: set = set() if metainfo is not None: self.set_metainfo(metainfo=metainfo) if data is not None: self.set_data(data) def set_metainfo(self, metainfo: dict) -> None: """Set or change key-value pairs in ``metainfo_field`` by parameter ``metainfo``. Args: metainfo (dict): A dict contains the meta information of image, such as ``img_shape``, ``scale_factor``, etc. """ assert isinstance( metainfo, dict), f'metainfo should be a ``dict`` but got {type(metainfo)}' meta = copy.deepcopy(metainfo) for k, v in meta.items(): if k in self._data_fields: raise AttributeError(f'`{k}` is used in data,' 'which is immutable. If you want to' 'change the key in data, please use' 'set_data') self._metainfo_fields.add(k) self.__dict__[k] = v def set_data(self, data: dict) -> None: """Set or change key-value pairs in ``data_field`` by parameter ``data``. Args: data (dict): A dict contains annotations of image or model predictions. """ assert isinstance(data, dict), f'meta should be a `dict` but got {data}' for k, v in data.items(): self.__setattr__(k, v) def new(self, metainfo: dict = None, data: dict = None) -> 'BaseDataElement': """Return a new data element with same type. If ``metainfo`` and ``data`` are None, the new data element will have same metainfo and data. If metainfo or data is not None, the new result will overwrite it with the input value. Args: metainfo (dict, optional): A dict contains the meta information of image, such as ``img_shape``, ``scale_factor``, etc. Defaults to None. data (dict, optional): A dict contains annotations of image or model predictions. Defaults to None. """ new_data = self.__class__() if metainfo is not None: new_data.set_metainfo(metainfo) else: new_data.set_metainfo(dict(self.metainfo_items())) if data is not None: new_data.set_data(data) else: new_data.set_data(dict(self.data_items())) return new_data def data_keys(self) -> list: """ Returns: list: Contains all keys in data_fields. """ return list(self._data_fields) def metainfo_keys(self) -> list: """ Returns: list: Contains all keys in metainfo_fields. """ return list(self._metainfo_fields) def data_values(self) -> list: """ Returns: list: Contains all values in data. """ return [getattr(self, k) for k in self.data_keys()] def metainfo_values(self) -> list: """ Returns: list: Contains all values in metainfo. """ return [getattr(self, k) for k in self.metainfo_keys()] def keys(self) -> list: """ Returns: list: Contains all keys in metainfo and data. """ return self.metainfo_keys() + self.data_keys() def values(self) -> list: """ Returns: list: Contains all values in metainfo and data. """ return self.metainfo_values() + self.data_values() def items(self) -> Iterator[Tuple[str, Any]]: """ Returns: iterator: an iterator object whose element is (key, value) tuple pairs for ``metainfo`` and ``data``. """ for k in self.keys(): yield (k, getattr(self, k)) def data_items(self) -> Iterator[Tuple[str, Any]]: """ Returns: iterator: an iterator object whose element is (key, value) tuple pairs for ``data``. """ for k in self.data_keys(): yield (k, getattr(self, k)) def metainfo_items(self) -> Iterator[Tuple[str, Any]]: """ Returns: iterator: an iterator object whose element is (key, value) tuple pairs for ``metainfo``. """ for k in self.metainfo_keys(): yield (k, getattr(self, k)) def __setattr__(self, name: str, val: Any): """setattr is only used to set data.""" if name in ('_metainfo_fields', '_data_fields'): if not hasattr(self, name): super().__setattr__(name, val) else: raise AttributeError(f'{name} has been used as a ' 'private attribute, which is immutable. ') else: if name in self._metainfo_fields: raise AttributeError( f'`{name}` is used in meta information.' 'if you want to change the key in metainfo, please use' 'set_metainfo(dict(name=val))') self._data_fields.add(name) super().__setattr__(name, val) def __delattr__(self, item: str): if item in ('_metainfo_fields', '_data_fields'): raise AttributeError(f'{item} has been used as a ' 'private attribute, which is immutable. ') super().__delattr__(item) if item in self._metainfo_fields: self._metainfo_fields.remove(item) elif item in self._data_fields: self._data_fields.remove(item) # dict-like methods __setitem__ = __setattr__ __delitem__ = __delattr__ def get(self, *args) -> Any: """get property in data and metainfo as the same as python.""" assert len(args) < 3, '``get`` get more than 2 arguments' return self.__dict__.get(*args) def pop(self, *args) -> Any: """pop property in data and metainfo as the same as python.""" assert len(args) < 3, '``pop`` get more than 2 arguments' name = args[0] if name in self._metainfo_fields: self._metainfo_fields.remove(args[0]) return self.__dict__.pop(*args) elif name in self._data_fields: self._data_fields.remove(args[0]) return self.__dict__.pop(*args) # with default value elif len(args) == 2: return args[1] else: # don't just use 'self.__dict__.pop(*args)' for only popping key in # metainfo or data raise KeyError(f'{args[0]} is not contained in metainfo or data') def __contains__(self, item: str) -> bool: return item in self._data_fields or \ item in self._metainfo_fields # Tensor-like methods def to(self, *args, **kwargs) -> 'BaseDataElement': """Apply same name function to all tensors in data_fields.""" new_data = self.new() for k, v in self.data_items(): if hasattr(v, 'to'): v = v.to(*args, **kwargs) data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if hasattr(v, 'to'): v = v.to(*args, **kwargs) metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data # Tensor-like methods def cpu(self) -> 'BaseDataElement': """Convert all tensors to CPU in metainfo and data.""" new_data = self.new() for k, v in self.data_items(): if isinstance(v, torch.Tensor): v = v.cpu() data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if isinstance(v, torch.Tensor): v = v.cpu() metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data # Tensor-like methods def cuda(self) -> 'BaseDataElement': """Convert all tensors to GPU in metainfo and data.""" new_data = self.new() for k, v in self.data_items(): if isinstance(v, torch.Tensor): v = v.cuda() data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if isinstance(v, torch.Tensor): v = v.cuda() metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data # Tensor-like methods def detach(self) -> 'BaseDataElement': """Detach all tensors in metainfo and data.""" new_data = self.new() for k, v in self.data_items(): if isinstance(v, torch.Tensor): v = v.detach() data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if isinstance(v, torch.Tensor): v = v.detach() metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data # Tensor-like methods def numpy(self) -> 'BaseDataElement': """Convert all tensor to np.narray in metainfo and data.""" new_data = self.new() for k, v in self.data_items(): if isinstance(v, torch.Tensor): v = v.detach().cpu().numpy() data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if isinstance(v, torch.Tensor): v = v.detach().cpu().numpy() metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data def to_tensor(self) -> 'BaseDataElement': """Convert all np.narray to tensor in metainfo and data.""" new_data = self.new() for k, v in self.data_items(): if isinstance(v, np.ndarray): v = torch.from_numpy(v) data = {k: v} new_data.set_data(data) for k, v in self.metainfo_items(): if isinstance(v, np.ndarray): v = torch.from_numpy(v) metainfo = {k: v} new_data.set_metainfo(metainfo) return new_data def __repr__(self) -> str: repr = '\n META INFORMATION \n' for k, v in self.metainfo_items(): if isinstance(v, (torch.Tensor, np.ndarray)): repr += f'shape of {k}: {v.shape} \n' else: repr += f'{k}: {v} \n' repr += '\n DATA FIELDS \n' for k, v in self.data_items(): if isinstance(v, (torch.Tensor, np.ndarray)): repr += f'shape of {k}: {v.shape} \n' else: repr += f'{k}: {v} \n' classname = self.__class__.__name__ return f'<{classname}({repr}\n) at {hex(id(self))}>'