# Copyright (c) OpenMMLab. All rights reserved. import logging from contextlib import contextmanager from typing import Optional import torch from mmengine import print_log from mmengine.utils import TORCH_VERSION, digit_version @contextmanager def autocast(device_type: Optional[str] = None, dtype: Optional[torch.dtype] = None, enabled: bool = True, cache_enabled: Optional[bool] = None): """A wrapper of ``torch.autocast`` and ``toch.cuda.amp.autocast``. Pytorch 1.5.0 provide ``torch.cuda.amp.autocast`` for running in mixed precision , and update it to ``torch.autocast`` in 1.10.0. Both interfaces have different arguments, and ``torch.autocast`` support running with cpu additionally. This function provides a unified interface by wrapping ``torch.autocast`` and ``torch.cuda.amp.autocast``, which resolves the compatibility issues that ``torch.cuda.amp.autocast`` does not support running mixed precision with cpu, and both contexts have different arguments. We suggest users using this function in the code to achieve maximized compatibility of different PyTorch versions. Note: ``autocast`` requires pytorch version >= 1.5.0. If pytorch version <= 1.10.0 and cuda is not available, it will raise an error with ``enabled=True``, since ``torch.cuda.amp.autocast`` only support cuda mode. Examples: >>> # case1: 1.10 > Pytorch version >= 1.5.0 >>> with autocast(): >>> # run in mixed precision context >>> pass >>> with autocast(device_type='cpu'):: >>> # raise error, torch.cuda.amp.autocast only support cuda mode. >>> pass >>> # case2: Pytorch version >= 1.10.0 >>> with autocast(): >>> # default cuda mixed precision context >>> pass >>> with autocast(device_type='cpu'): >>> # cpu mixed precision context >>> pass >>> with autocast( >>> device_type='cuda', enabled=True, cache_enabled=True): >>> # enable precision context with more specific arguments. >>> pass Args: device_type (str, required): Whether to use 'cuda' or 'cpu' device. enabled(bool): Whether autocasting should be enabled in the region. Defaults to True dtype (torch_dtype, optional): Whether to use ``torch.float16`` or ``torch.bfloat16``. cache_enabled(bool, optional): Whether the weight cache inside autocast should be enabled. """ # If `enabled` is True, enable an empty context and all calculations # are performed under fp32. assert digit_version(TORCH_VERSION) >= digit_version('1.5.0'), ( 'The minimum pytorch version requirements of mmengine is 1.5.0, but ' f'got {TORCH_VERSION}') if (digit_version('1.5.0') <= digit_version(TORCH_VERSION) < digit_version('1.10.0')): # If pytorch version is between 1.5.0 and 1.10.0, the default value of # dtype for `torch.cuda.amp.autocast` is torch.float16. assert device_type == 'cuda' or device_type is None, ( 'Pytorch version under 1.5.0 only supports running automatic ' 'mixed training with cuda') if dtype is not None or cache_enabled is not None: print_log( f'{dtype} and {device_type} will not work for ' '`autocast` since your Pytorch version: ' f'{TORCH_VERSION} <= 1.10.0', logger='current', level=logging.WARNING) if torch.cuda.is_available(): with torch.cuda.amp.autocast(enabled=enabled): yield else: if not enabled: yield else: raise RuntimeError( 'If pytorch versions is between 1.5.0 and 1.10, ' '`autocast` is only available in gpu mode') else: if torch.cuda.is_available(): device_type = 'cuda' if device_type is None else device_type else: device_type = 'cpu' if device_type is None else device_type if digit_version(TORCH_VERSION) < digit_version('1.11.0'): if dtype is not None and dtype != torch.bfloat16: print_log( f'{dtype} must be `torch.bfloat16` with Pytorch ' f'version: {TORCH_VERSION}', logger='current', level=logging.WARNING) dtype = torch.bfloat16 with torch.autocast( device_type=device_type, enabled=enabled, dtype=dtype, cache_enabled=cache_enabled): yield