# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from pathlib import Path from typing import Dict, Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.fileio import FileClient, dump from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils import is_tuple_of, scandir DATA_BATCH = Optional[Sequence[dict]] SUFFIX_TYPE = Union[Sequence[str], str] @HOOKS.register_module() class LoggerHook(Hook): """Collect logs from different components of ``Runner`` and write them to terminal, JSON file, tensorboard and wandb .etc. ``LoggerHook`` is used to record logs formatted by ``LogProcessor`` during training/validation/testing phase. It is used to control following behaviors: - The frequency of logs update in terminal, local, tensorboad wandb.etc. - The frequency of show experiment information in terminal. - The work directory to save logs. Args: interval (int): Logging interval (every k iterations). Defaults to 10. ignore_last (bool): Ignore the log of last iterations in each epoch if the number of remaining iterations is less than :attr:`interval`. Defaults to True. interval_exp_name (int): Logging interval for experiment name. This feature is to help users conveniently get the experiment information from screen or log file. Defaults to 1000. out_dir (str or Path, optional): The root directory to save checkpoints. If not specified, ``runner.work_dir`` will be used by default. If specified, the ``out_dir`` will be the concatenation of ``out_dir`` and the last level directory of ``runner.work_dir``. For example, if the input ``our_dir`` is ``./tmp`` and ``runner.work_dir`` is ``./work_dir/cur_exp``, then the log will be saved in ``./tmp/cur_exp``. Defaults to None. out_suffix (Tuple[str] or str): Those files in ``runner._log_dir`` ending with ``out_suffix`` will be copied to ``out_dir``. Defaults to ('json', '.log', '.py'). keep_local (bool): Whether to keep local logs in the local machine when :attr:`out_dir` is specified. If False, the local log will be removed. Defaults to True. file_client_args (dict, optional): Arguments to instantiate a FileClient. See :class:`mmengine.fileio.FileClient` for details. Defaults to None. log_metric_by_epoch (bool): Whether to output metric in validation step by epoch. It can be true when running in epoch based runner. If set to True, `after_val_epoch` will set `step` to self.epoch in `runner.visualizer.add_scalars`. Otherwise `step` will be self.iter. Default to True. Examples: >>> # The simplest LoggerHook config. >>> logger_hook_cfg = dict(interval=20) """ priority = 'BELOW_NORMAL' def __init__(self, interval: int = 10, ignore_last: bool = True, interval_exp_name: int = 1000, out_dir: Optional[Union[str, Path]] = None, out_suffix: SUFFIX_TYPE = ('.json', '.log', '.py', 'yaml'), keep_local: bool = True, file_client_args: Optional[dict] = None, log_metric_by_epoch: bool = True): self.interval = interval self.ignore_last = ignore_last self.interval_exp_name = interval_exp_name if out_dir is None and file_client_args is not None: raise ValueError( 'file_client_args should be "None" when `out_dir` is not' 'specified.') self.out_dir = out_dir if not (out_dir is None or isinstance(out_dir, str) or is_tuple_of(out_dir, str)): raise TypeError('out_dir should be None or string or tuple of ' f'string, but got {type(out_dir)}') self.out_suffix = out_suffix self.keep_local = keep_local self.file_client_args = file_client_args self.json_log_path: Optional[str] = None if self.out_dir is not None: self.file_client = FileClient.infer_client(file_client_args, self.out_dir) self.log_metric_by_epoch = log_metric_by_epoch def before_run(self, runner) -> None: """Infer ``self.file_client`` from ``self.out_dir``. Initialize the ``self.start_iter`` and record the meta information. Args: runner (Runner): The runner of the training process. """ if self.out_dir is not None: # The final `self.out_dir` is the concatenation of `self.out_dir` # and the last level directory of `runner.work_dir` basename = osp.basename(runner.work_dir.rstrip(osp.sep)) self.out_dir = self.file_client.join_path(self.out_dir, basename) runner.logger.info( f'Text logs will be saved to {self.out_dir} by ' f'{self.file_client.name} after the training process.') self.json_log_path = f'{runner.timestamp}.json' def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Record logs after training iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict, optional): Outputs from model. Defaults to None. """ # Print experiment name every n iterations. if self.every_n_train_iters( runner, self.interval_exp_name) or (self.end_of_epoch( runner.train_dataloader, batch_idx)): exp_info = f'Exp name: {runner.experiment_name}' runner.logger.info(exp_info) if self.every_n_inner_iters(batch_idx, self.interval): tag, log_str = runner.log_processor.get_log_after_iter( runner, batch_idx, 'train') elif (self.end_of_epoch(runner.train_dataloader, batch_idx) and not self.ignore_last): # `runner.max_iters` may not be divisible by `self.interval`. if # `self.ignore_last==True`, the log of remaining iterations will # be recorded (Epoch [4][1000/1007], the logs of 998-1007 # iterations will be recorded). tag, log_str = runner.log_processor.get_log_after_iter( runner, batch_idx, 'train') else: return runner.logger.info(log_str) runner.visualizer.add_scalars( tag, step=runner.iter + 1, file_path=self.json_log_path) def after_val_iter( self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Record logs after validation iteration. Args: runner (Runner): The runner of the validation process. batch_idx (int): The index of the current batch in the validation loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (sequence, optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): _, log_str = runner.log_processor.get_log_after_iter( runner, batch_idx, 'val') runner.logger.info(log_str) def after_test_iter( self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Record logs after testing iteration. Args: runner (Runner): The runner of the testing process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (sequence, optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): _, log_str = runner.log_processor.get_log_after_iter( runner, batch_idx, 'test') runner.logger.info(log_str) def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each validation epoch. Args: runner (Runner): The runner of the validation process. metrics (Dict[str, float], optional): Evaluation results of all metrics on validation dataset. The keys are the names of the metrics, and the values are corresponding results. """ tag, log_str = runner.log_processor.get_log_after_epoch( runner, len(runner.val_dataloader), 'val') runner.logger.info(log_str) if self.log_metric_by_epoch: # when `log_metric_by_epoch` is set to True, it's expected # that validation metric can be logged by epoch rather than # by iter. At the same time, scalars related to time should # still be logged by iter to avoid messy visualized result. # see details in PR #278. metric_tags = {k: v for k, v in tag.items() if 'time' not in k} runner.visualizer.add_scalars( metric_tags, step=runner.epoch, file_path=self.json_log_path) else: runner.visualizer.add_scalars( tag, step=runner.iter, file_path=self.json_log_path) def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each test epoch. Args: runner (Runner): The runner of the testing process. metrics (Dict[str, float], optional): Evaluation results of all metrics on test dataset. The keys are the names of the metrics, and the values are corresponding results. """ tag, log_str = runner.log_processor.get_log_after_epoch( runner, len(runner.test_dataloader), 'test') runner.logger.info(log_str) dump(tag, osp.join(runner.log_dir, self.json_log_path)) # type: ignore def after_run(self, runner) -> None: """Copy logs to ``self.out_dir`` if ``self.out_dir is not None`` Args: runner (Runner): The runner of the training/testing/validation process. """ # copy or upload logs to self.out_dir if self.out_dir is None: return for filename in scandir(runner._log_dir, self.out_suffix, True): local_filepath = osp.join(runner._log_dir, filename) out_filepath = self.file_client.join_path(self.out_dir, filename) with open(local_filepath) as f: self.file_client.put_text(f.read(), out_filepath) runner.logger.info( f'The file {local_filepath} has been uploaded to ' f'{out_filepath}.') if not self.keep_local: os.remove(local_filepath) runner.logger.info(f'{local_filepath} was removed due to the ' '`self.keep_local=False`')