# Copyright (c) OpenMMLab. All rights reserved. import copy import logging import multiprocessing as mp import os import os.path as osp import platform import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import SGD from torch.utils.data import DataLoader, Dataset from mmengine.config import Config from mmengine.evaluator import BaseEvaluator from mmengine.hooks import Hook from mmengine.logging import MessageHub, MMLogger from mmengine.model.wrappers import MMDataParallel, MMDistributedDataParallel from mmengine.optim.scheduler import MultiStepLR from mmengine.registry import (DATASETS, EVALUATORS, HOOKS, LOOPS, MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS, Registry) from mmengine.runner import Runner from mmengine.runner.loop import EpochBasedTrainLoop, IterBasedTrainLoop @MODELS.register_module() class ToyModel(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 1, 1) self.conv2 = nn.Conv2d(1, 1, 1) def forward(self, x): return self.conv2(F.relu(self.conv1(x))) def train_step(self, *inputs, **kwargs): pass def val_step(self, *inputs, **kwargs): pass @DATASETS.register_module() class ToyDataset(Dataset): META = dict() # type: ignore data = np.zeros((10, 1, 1, 1)) def __len__(self): return self.data.shape[0] def __getitem__(self, index): return torch.from_numpy(self.data[index]) @EVALUATORS.register_module() class ToyEvaluator(BaseEvaluator): def __init__(self, collect_device='cpu', dummy_metrics=None): super().__init__(collect_device=collect_device) self.dummy_metrics = dummy_metrics def process(self, data_samples, predictions): result = {'acc': 1} self.results.append(result) def compute_metrics(self, results): return dict(acc=1) class TestRunner(TestCase): def setUp(self): self.temp_dir = tempfile.gettempdir() full_cfg = dict( model=dict(type='ToyModel'), train_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=1, num_workers=0), val_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=1, num_workers=0), test_dataloader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=1, num_workers=0), optimizer=dict(type='SGD', lr=0.01), param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]), evaluator=dict(type='ToyEvaluator'), train_cfg=dict(by_epoch=True, max_epochs=3), validation_cfg=dict(interval=1), test_cfg=dict(), custom_hooks=[], default_hooks=dict( timer=dict(type='IterTimerHook'), checkpoint=dict(type='CheckpointHook', interval=1), logger=dict(type='TextLoggerHook'), optimizer=dict(type='OptimizerHook', grad_clip=False), param_scheduler=dict(type='ParamSchedulerHook')), env_cfg=dict(dist_params=dict(backend='nccl'), ), log_cfg=dict(log_level='INFO'), work_dir=self.temp_dir) self.full_cfg = Config(full_cfg) def tearDown(self): os.removedirs(self.temp_dir) def test_build_from_cfg(self): runner = Runner.build_from_cfg(cfg=self.full_cfg) # test env params assert runner.distributed is False assert runner.seed is not None assert runner.work_dir == self.temp_dir # model should be full initialized assert isinstance(runner.model, (nn.Module, MMDataParallel)) # lazy init assert isinstance(runner.optimzier, dict) assert isinstance(runner.scheduler, list) assert isinstance(runner.train_dataloader, dict) assert isinstance(runner.val_dataloader, dict) assert isinstance(runner.test_dataloader, dict) assert isinstance(runner.evaluator, dict) # after runner.train(), train and val loader should be initialized # test loader should still be config runner.train() assert isinstance(runner.test_dataloader, dict) assert isinstance(runner.train_dataloader, DataLoader) assert isinstance(runner.val_dataloader, DataLoader) assert isinstance(runner.optimzier, SGD) assert isinstance(runner.evaluator, ToyEvaluator) runner.test() assert isinstance(runner.test_dataloader, DataLoader) # cannot run runner.test() without evaluator cfg with self.assertRaisesRegex(AssertionError, 'evaluator does not exist'): cfg = copy.deepcopy(self.full_cfg) cfg.pop('evaluator') runner = Runner.build_from_cfg(cfg) runner.test() # cannot run runner.train() without optimizer cfg with self.assertRaisesRegex(AssertionError, 'optimizer does not exist'): cfg = copy.deepcopy(self.full_cfg) cfg.pop('optimizer') runner = Runner.build_from_cfg(cfg) runner.train() # can run runner.train() without validation cfg = copy.deepcopy(self.full_cfg) cfg.validation_cfg = None cfg.pop('evaluator') cfg.pop('val_dataloader') runner = Runner.build_from_cfg(cfg) runner.train() def test_manually_init(self): model = ToyModel() optimizer = SGD( model.parameters(), lr=0.01, ) class ToyHook(Hook): def before_train_epoch(self, runner): pass class ToyHook2(Hook): def after_train_epoch(self, runner): pass toy_hook = ToyHook() toy_hook2 = ToyHook2() runner = Runner( model=model, train_dataloader=DataLoader(dataset=ToyDataset()), val_dataloader=DataLoader(dataset=ToyDataset()), optimzier=optimizer, param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]), evaluator=ToyEvaluator(), train_cfg=dict(by_epoch=True, max_epochs=3), validation_cfg=dict(interval=1), default_hooks=dict(param_scheduler=toy_hook), custom_hooks=[toy_hook2]) runner.train() hook_names = [hook.__class__.__name__ for hook in runner.hooks] # test custom hook registered in runner assert 'ToyHook2' in hook_names # test default hook is replaced assert 'ToyHook' in hook_names # test other default hooks assert 'IterTimerHook' in hook_names # cannot run runner.test() when test_dataloader is None with self.assertRaisesRegex(AssertionError, 'test dataloader does not exist'): runner.test() # cannot run runner.train() when optimizer is None with self.assertRaisesRegex(AssertionError, 'optimizer does not exist'): runner = Runner( model=model, train_dataloader=DataLoader(dataset=ToyDataset()), val_dataloader=DataLoader(dataset=ToyDataset()), param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]), evaluator=ToyEvaluator(), train_cfg=dict(by_epoch=True, max_epochs=3), validation_cfg=dict(interval=1)) runner.train() # cannot run runner.train() when validation_cfg is set # but val loader is None with self.assertRaisesRegex(AssertionError, 'optimizer does not exist'): runner = Runner( model=model, train_dataloader=DataLoader(dataset=ToyDataset()), optimzier=optimizer, param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]), train_cfg=dict(by_epoch=True, max_epochs=3), validation_cfg=dict(interval=1)) runner.train() # run runner.train() without validation runner = Runner( model=model, train_dataloader=DataLoader(dataset=ToyDataset()), optimzier=optimizer, param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]), train_cfg=dict(by_epoch=True, max_epochs=3), validation_cfg=None) runner.train() def test_setup_env(self): # temporarily store system setting sys_start_mehod = mp.get_start_method(allow_none=True) # pop and temp save system env vars sys_omp_threads = os.environ.pop('OMP_NUM_THREADS', default=None) sys_mkl_threads = os.environ.pop('MKL_NUM_THREADS', default=None) # test default multi-processing setting when workers > 1 cfg = copy.deepcopy(self.full_cfg) cfg.train_dataloader.num_workers = 4 cfg.test_dataloader.num_workers = 4 cfg.val_dataloader.num_workers = 4 Runner.build_from_cfg(cfg) assert os.getenv('OMP_NUM_THREADS') == '1' assert os.getenv('MKL_NUM_THREADS') == '1' if platform.system() != 'Windows': assert mp.get_start_method() == 'fork' # test default multi-processing setting when workers <= 1 os.environ.pop('OMP_NUM_THREADS') os.environ.pop('MKL_NUM_THREADS') cfg = copy.deepcopy(self.full_cfg) cfg.train_dataloader.num_workers = 0 cfg.test_dataloader.num_workers = 0 cfg.val_dataloader.num_workers = 0 Runner.build_from_cfg(cfg) assert 'OMP_NUM_THREADS' not in os.environ assert 'MKL_NUM_THREADS' not in os.environ # test manually set env var os.environ['OMP_NUM_THREADS'] = '3' cfg = copy.deepcopy(self.full_cfg) cfg.train_dataloader.num_workers = 2 cfg.test_dataloader.num_workers = 2 cfg.val_dataloader.num_workers = 2 Runner.build_from_cfg(cfg) assert os.getenv('OMP_NUM_THREADS') == '3' # test manually set mp start method cfg = copy.deepcopy(self.full_cfg) cfg.env_cfg.mp_cfg = dict(mp_start_method='spawn') Runner.build_from_cfg(cfg) assert mp.get_start_method() == 'spawn' # revert setting to avoid affecting other programs if sys_start_mehod: mp.set_start_method(sys_start_mehod, force=True) if sys_omp_threads: os.environ['OMP_NUM_THREADS'] = sys_omp_threads else: os.environ.pop('OMP_NUM_THREADS') if sys_mkl_threads: os.environ['MKL_NUM_THREADS'] = sys_mkl_threads else: os.environ.pop('MKL_NUM_THREADS') def test_logger(self): runner = Runner.build_from_cfg(self.full_cfg) assert isinstance(runner.logger, MMLogger) # test latest logger and runner logger are the same assert runner.logger.level == logging.INFO assert MMLogger.get_instance( ).instance_name == runner.logger.instance_name # test latest message hub and runner message hub are the same assert isinstance(runner.message_hub, MessageHub) assert MessageHub.get_instance( ).instance_name == runner.message_hub.instance_name # test set log level in cfg self.full_cfg.log_cfg.log_level = 'DEBUG' runner = Runner.build_from_cfg(self.full_cfg) assert runner.logger.level == logging.DEBUG @patch('torch.distributed.get_rank', lambda: 0) @patch('torch.distributed.is_initialized', lambda: True) @patch('torch.distributed.is_available', lambda: True) def test_model_wrapper(self): # non-distributed model build from config runner = Runner.build_from_cfg(self.full_cfg) assert isinstance(runner.model, MMDataParallel) # non-distributed model build manually model = ToyModel() runner = Runner( model=model, train_cfg=dict(by_epoch=True, max_epochs=3)) assert isinstance(runner.model, MMDataParallel) # distributed model build from config cfg = copy.deepcopy(self.full_cfg) cfg.launcher = 'pytorch' runner = Runner.build_from_cfg(cfg) assert isinstance(runner.model, MMDistributedDataParallel) # distributed model build manually model = ToyModel() runner = Runner( model=model, train_cfg=dict(by_epoch=True, max_epochs=3), env_cfg=dict(dist_params=dict(backend='nccl')), launcher='pytorch') assert isinstance(runner.model, MMDistributedDataParallel) # custom model wrapper @MODEL_WRAPPERS.register_module() class CustomModelWrapper: def train_step(self, *inputs, **kwargs): pass def val_step(self, *inputs, **kwargs): pass cfg = copy.deepcopy(self.full_cfg) cfg.model_wrapper = dict(type='CustomModelWrapper') runner = Runner.build_from_cfg(cfg) assert isinstance(runner.model, CustomModelWrapper) def test_default_scope(self): TOY_SCHEDULERS = Registry( 'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy') @TOY_SCHEDULERS.register_module() class ToyScheduler(MultiStepLR): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.full_cfg.param_scheduler = dict( type='ToyScheduler', milestones=[1, 2]) self.full_cfg.default_scope = 'toy' runner = Runner.build_from_cfg(self.full_cfg) runner.train() assert isinstance(runner.scheduler[0], ToyScheduler) def test_checkpoint(self): runner = Runner.build_from_cfg(self.full_cfg) runner.run() path = osp.join(self.temp_dir, 'epoch_3.pth') runner.save_checkpoint(path) assert osp.exists(path) ckpt = torch.load(path) # scheduler should saved in the checkpoint assert isinstance(ckpt['scheduler'], list) # load by a new runner but not resume runner2 = Runner.build_from_cfg(self.full_cfg) runner2.load_checkpoint(path, resume=False) self.assertNotEqual(runner2.epoch, runner.epoch) self.assertNotEqual(runner2.iter, runner.iter) # load by a new runner and resume runner3 = Runner.build_from_cfg(self.full_cfg) runner3.load_checkpoint(path, resume=True) self.assertEqual(runner3.epoch, runner.epoch) self.assertEqual(runner3.iter, runner.iter) def test_custom_hooks(self): results = [] targets = [0, 1, 2] @HOOKS.register_module() class ToyHook(Hook): def before_train_epoch(self, runner): results.append(runner.epoch) self.full_cfg.custom_hooks = [dict(type='ToyHook', priority=50)] runner = Runner.build_from_cfg(self.full_cfg) # test hook registered in runner hook_names = [hook.__class__.__name__ for hook in runner.hooks] assert 'ToyHook' in hook_names # test hook behavior runner.train() for result, target, in zip(results, targets): self.assertEqual(result, target) def test_iter_based(self): self.full_cfg.train_cfg = dict(by_epoch=False, max_iters=30) # test iter and epoch counter of IterBasedTrainLoop epoch_results = [] iter_results = [] inner_iter_results = [] iter_targets = [i for i in range(30)] @HOOKS.register_module() class TestIterHook(Hook): def before_train_epoch(self, runner): epoch_results.append(runner.epoch) def before_train_iter(self, runner): iter_results.append(runner.iter) inner_iter_results.append(runner.inner_iter) self.full_cfg.custom_hooks = [dict(type='TestIterHook', priority=50)] runner = Runner.build_from_cfg(self.full_cfg) assert isinstance(runner._train_loop, IterBasedTrainLoop) runner.train() self.assertEqual(len(epoch_results), 1) self.assertEqual(epoch_results[0], 0) for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(inner_iter_results, iter_targets): self.assertEqual(result, target) def test_epoch_based(self): self.full_cfg.train_cfg = dict(by_epoch=True, max_epochs=3) # test iter and epoch counter of EpochBasedTrainLoop epoch_results = [] epoch_targets = [i for i in range(3)] iter_results = [] iter_targets = [i for i in range(10 * 3)] inner_iter_results = [] inner_iter_targets = [i for i in range(10)] * 3 # train and val @HOOKS.register_module() class TestEpochHook(Hook): def before_train_epoch(self, runner): epoch_results.append(runner.epoch) def before_train_iter(self, runner, data_batch=None): iter_results.append(runner.iter) inner_iter_results.append(runner.inner_iter) self.full_cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)] runner = Runner.build_from_cfg(self.full_cfg) assert isinstance(runner._train_loop, EpochBasedTrainLoop) runner.train() for result, target, in zip(epoch_results, epoch_targets): self.assertEqual(result, target) for result, target, in zip(iter_results, iter_targets): self.assertEqual(result, target) for result, target, in zip(inner_iter_results, inner_iter_targets): self.assertEqual(result, target) def test_custom_loop(self): # test custom loop with additional hook @LOOPS.register_module() class CustomTrainLoop(EpochBasedTrainLoop): """custom train loop with additional warmup stage.""" def __init__(self, runner, loader, max_epochs, warmup_loader, max_warmup_iters): super().__init__( runner=runner, loader=loader, max_epochs=max_epochs) self.warmup_loader = self.runner.build_dataloader( warmup_loader) self.max_warmup_iters = max_warmup_iters def run(self): self.runner.call_hooks('before_run') for idx, data_batch in enumerate(self.warmup_loader): self.warmup_iter(data_batch) if idx >= self.max_warmup_iters: break self.runner.call_hooks('before_train_epoch') while self.runner.iter < self._max_iter: data_batch = next(self.loader) self.run_iter(data_batch) self.runner.call_hooks('after_train_epoch') self.runner.call_hooks('after_run') def warmup_iter(self, data_batch): self.runner.call_hooks( 'before_warmup_iter', args=dict(data_batch=data_batch)) outputs = self.runner.model.train_step(data_batch) self.runner.call_hooks( 'after_warmup_iter', args=dict(data_batch=data_batch, outputs=outputs)) before_warmup_iter_results = [] after_warmup_iter_results = [] @HOOKS.register_module() class TestWarmupHook(Hook): """test custom train loop.""" def before_warmup_iter(self, data_batch=None): before_warmup_iter_results.append('before') def after_warmup_iter(self, data_batch=None, outputs=None): after_warmup_iter_results.append('after') self.full_cfg.train_cfg = dict( type='CustomTrainLoop', max_epochs=3, warmup_loader=dict( dataset=dict(type='ToyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=1, num_workers=0), max_warmup_iters=5) self.full_cfg.custom_hooks = [dict(type='TestWarmupHook', priority=50)] runner = Runner.build_from_cfg(self.full_cfg) assert isinstance(runner._train_loop, CustomTrainLoop) runner.train() # test custom hook triggered normally self.assertEqual(len(before_warmup_iter_results), 5) self.assertEqual(len(after_warmup_iter_results), 5) for before, after in zip(before_warmup_iter_results, after_warmup_iter_results): self.assertEqual(before, 'before') self.assertEqual(after, 'after')