# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Dict, List, Optional from unittest import TestCase import numpy as np from mmengine.data import BaseDataSample from mmengine.evaluator import BaseEvaluator, build_evaluator from mmengine.registry import EVALUATORS @EVALUATORS.register_module() class ToyEvaluator(BaseEvaluator): """Evaluaotr that calculates the metric `accuracy` from predictions and labels. Alternatively, this evaluator can return arbitrary dummy metrics set in the config. Default prefix: Toy Metrics: - accuracy (float): The classification accuracy. Only when `dummy_metrics` is None. - size (int): The number of test samples. Only when `dummy_metrics` is None. If `dummy_metrics` is set as a dict in the config, it will be returned as the metrics and override `accuracy` and `size`. """ default_prefix = 'Toy' def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None, dummy_metrics: Optional[Dict] = None): super().__init__(collect_device=collect_device, prefix=prefix) self.dummy_metrics = dummy_metrics def process(self, data_batch, predictions): results = [{ 'pred': pred.pred, 'label': data[1].label } for pred, data in zip(predictions, data_batch)] self.results.extend(results) def compute_metrics(self, results: List): if self.dummy_metrics is not None: assert isinstance(self.dummy_metrics, dict) return self.dummy_metrics.copy() pred = np.array([result['pred'] for result in results]) label = np.array([result['label'] for result in results]) acc = (pred == label).sum() / pred.size metrics = { 'accuracy': acc, 'size': pred.size, # To check the number of testing samples } return metrics @EVALUATORS.register_module() class UnprefixedEvaluator(BaseEvaluator): """Evaluator with unassigned `default_prefix` to test the warning information.""" def process(self, data_samples: dict, predictions: dict) -> None: pass def compute_metrics(self, results: list) -> dict: return dict(dummy=0.0) def generate_test_results(size, batch_size, pred, label): num_batch = math.ceil(size / batch_size) bs_residual = size % batch_size for i in range(num_batch): bs = bs_residual if i == num_batch - 1 else batch_size data_batch = [(np.zeros( (3, 10, 10)), BaseDataSample(data={'label': label})) for _ in range(bs)] predictions = [BaseDataSample(data={'pred': pred}) for _ in range(bs)] yield (data_batch, predictions) class TestBaseEvaluator(TestCase): def test_single_evaluator(self): cfg = dict(type='ToyEvaluator') evaluator = build_evaluator(cfg) size = 10 batch_size = 4 for data_samples, predictions in generate_test_results( size, batch_size, pred=1, label=1): evaluator.process(data_samples, predictions) metrics = evaluator.evaluate(size=size) self.assertAlmostEqual(metrics['Toy.accuracy'], 1.0) self.assertEqual(metrics['Toy.size'], size) # Test empty results cfg = dict(type='ToyEvaluator', dummy_metrics=dict(accuracy=1.0)) evaluator = build_evaluator(cfg) with self.assertWarnsRegex(UserWarning, 'got empty `self._results`.'): evaluator.evaluate(0) def test_composed_evaluator(self): cfg = [ dict(type='ToyEvaluator'), dict(type='ToyEvaluator', dummy_metrics=dict(mAP=0.0)) ] evaluator = build_evaluator(cfg) size = 10 batch_size = 4 for data_samples, predictions in generate_test_results( size, batch_size, pred=1, label=1): evaluator.process(data_samples, predictions) metrics = evaluator.evaluate(size=size) self.assertAlmostEqual(metrics['Toy.accuracy'], 1.0) self.assertAlmostEqual(metrics['Toy.mAP'], 0.0) self.assertEqual(metrics['Toy.size'], size) def test_ambiguate_metric(self): cfg = [ dict(type='ToyEvaluator', dummy_metrics=dict(mAP=0.0)), dict(type='ToyEvaluator', dummy_metrics=dict(mAP=0.0)) ] evaluator = build_evaluator(cfg) size = 10 batch_size = 4 for data_samples, predictions in generate_test_results( size, batch_size, pred=1, label=1): evaluator.process(data_samples, predictions) with self.assertRaisesRegex( ValueError, 'There are multiple evaluators with the same metric name'): _ = evaluator.evaluate(size=size) def test_dataset_meta(self): dataset_meta = dict(classes=('cat', 'dog')) cfg = [ dict(type='ToyEvaluator'), dict(type='ToyEvaluator', dummy_metrics=dict(mAP=0.0)) ] evaluator = build_evaluator(cfg) evaluator.dataset_meta = dataset_meta self.assertDictEqual(evaluator.dataset_meta, dataset_meta) for _evaluator in evaluator.evaluators: self.assertDictEqual(_evaluator.dataset_meta, dataset_meta) def test_prefix(self): cfg = dict(type='UnprefixedEvaluator') with self.assertWarnsRegex(UserWarning, 'The prefix is not set'): _ = build_evaluator(cfg)