# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import warnings from collections import OrderedDict from math import inf from pathlib import Path from typing import Optional, Sequence, Union from mmengine.dist import master_only from mmengine.fileio import FileClient from mmengine.registry import HOOKS from mmengine.utils import is_seq_of from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class CheckpointHook(Hook): """Save checkpoints periodically. Args: interval (int): The saving period. If ``by_epoch=True``, interval indicates epochs, otherwise it indicates iterations. Defaults to -1, which means "never". by_epoch (bool): Saving checkpoints by epoch or by iteration. Default: True. save_optimizer (bool): Whether to save optimizer state_dict in the checkpoint. It is usually used for resuming experiments. Defaults to True. save_param_scheduler (bool): Whether to save param_scheduler state_dict in the checkpoint. It is usually used for resuming experiments. Defaults to True. out_dir (str, optional | Path): The root directory to save checkpoints. If not specified, ``runner.work_dir`` will be used by default. If specified, the ``out_dir`` will be the concatenation of ``out_dir`` and the last level directory of ``runner.work_dir``. For example, if the input ``our_dir`` is ``./tmp`` and ``runner.work_dir`` is ``./work_dir/cur_exp``, then the ckpt will be saved in ``./tmp/cur_exp``. Defaults to None. max_keep_ckpts (int): The maximum checkpoints to keep. In some cases we want only the latest few checkpoints and would like to delete old ones to save the disk space. Defaults to -1, which means unlimited. save_last (bool): Whether to force the last checkpoint to be saved regardless of interval. Defaults to True. save_best (str, optional): If a metric is specified, it would measure the best checkpoint during evaluation. The information about best checkpoint would be saved in ``runner.message_hub`` to keep best score value and best checkpoint path, which will be also loaded when resuming checkpoint. Options are the evaluation metrics on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox detection and instance segmentation. ``AR@100`` for proposal recall. If ``save_best`` is ``auto``, the first key of the returned ``OrderedDict`` result will be used. Defaults to None. rule (str, optional): Comparison rule for best score. If set to None, it will infer a reasonable rule. Keys such as 'acc', 'top' .etc will be inferred by 'greater' rule. Keys contain 'loss' will be inferred by 'less' rule. Options are 'greater', 'less', None. Defaults to None. greater_keys (List[str], optional): Metric keys that will be inferred by 'greater' comparison rule. If ``None``, _default_greater_keys will be used. Defaults to None. less_keys (List[str], optional): Metric keys that will be inferred by 'less' comparison rule. If ``None``, _default_less_keys will be used. Defaults to None. file_client_args (dict, optional): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to None. """ out_dir: str priority = 'VERY_LOW' # logic to save best checkpoints # Since the key for determining greater or less is related to the # downstream tasks, downstream repositories may need to overwrite # the following inner variables accordingly. rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y} init_value_map = {'greater': -inf, 'less': inf} _default_greater_keys = [ 'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU', 'mAcc', 'aAcc' ] _default_less_keys = ['loss'] def __init__(self, interval: int = -1, by_epoch: bool = True, save_optimizer: bool = True, save_param_scheduler: bool = True, out_dir: Optional[Union[str, Path]] = None, max_keep_ckpts: int = -1, save_last: bool = True, save_best: Optional[str] = None, rule: Optional[str] = None, greater_keys: Optional[Sequence[str]] = None, less_keys: Optional[Sequence[str]] = None, file_client_args: Optional[dict] = None, **kwargs) -> None: self.interval = interval self.by_epoch = by_epoch self.save_optimizer = save_optimizer self.save_param_scheduler = save_param_scheduler self.out_dir = out_dir # type: ignore self.max_keep_ckpts = max_keep_ckpts self.save_last = save_last self.args = kwargs self.file_client_args = file_client_args # save best logic assert isinstance(save_best, str) or save_best is None, \ '"save_best" should be a str or None ' \ f'rather than {type(save_best)}' self.save_best = save_best if greater_keys is None: self.greater_keys = self._default_greater_keys else: if not isinstance(greater_keys, (list, tuple)): greater_keys = (greater_keys, ) # type: ignore assert is_seq_of(greater_keys, str) self.greater_keys = greater_keys # type: ignore if less_keys is None: self.less_keys = self._default_less_keys else: if not isinstance(less_keys, (list, tuple)): less_keys = (less_keys, ) # type: ignore assert is_seq_of(less_keys, str) self.less_keys = less_keys # type: ignore if self.save_best is not None: self.best_ckpt_path = None self._init_rule(rule, self.save_best) def before_train(self, runner) -> None: """Finish all operations, related to checkpoint. This function will get the appropriate file client, and the directory to save these checkpoints of the model. Args: runner (Runner): The runner of the training process. """ if self.out_dir is None: self.out_dir = runner.work_dir self.file_client = FileClient.infer_client(self.file_client_args, self.out_dir) # if `self.out_dir` is not equal to `runner.work_dir`, it means that # `self.out_dir` is set so the final `self.out_dir` is the # concatenation of `self.out_dir` and the last level directory of # `runner.work_dir` if self.out_dir != runner.work_dir: basename = osp.basename(runner.work_dir.rstrip(osp.sep)) self.out_dir = self.file_client.join_path( self.out_dir, basename) # type: ignore # noqa: E501 runner.logger.info(f'Checkpoints will be saved to {self.out_dir} by ' f'{self.file_client.name}.') if self.save_best is not None: if 'best_ckpt' not in runner.message_hub.runtime_info: self.best_ckpt_path = None else: self.best_ckpt_path = runner.message_hub.get_info('best_ckpt') def after_train_epoch(self, runner) -> None: """Save the checkpoint and synchronize buffers after each epoch. Args: runner (Runner): The runner of the training process. """ if not self.by_epoch: return # save checkpoint for following cases: # 1. every ``self.interval`` epochs # 2. reach the last epoch of training if self.every_n_epochs(runner, self.interval) or ( self.save_last and self.is_last_train_epoch(runner)): runner.logger.info( f'Saving checkpoint at {runner.epoch + 1} epochs') self._save_checkpoint(runner) def after_val_epoch(self, runner, metrics): """Save the checkpoint and synchronize buffers after each evaluation epoch. Args: runner (Runner): The runner of the training process. metrics (dict): Evaluation results of all metrics """ self._save_best_checkpoint(runner, metrics) def _get_metric_score(self, metrics): eval_res = OrderedDict() if metrics is not None: eval_res.update(metrics) if len(eval_res) == 0: warnings.warn( 'Since `eval_res` is an empty dict, the behavior to save ' 'the best checkpoint will be skipped in this evaluation.') return None if self.key_indicator == 'auto': self._init_rule(self.rule, list(eval_res.keys())[0]) return eval_res[self.key_indicator] @master_only def _save_checkpoint(self, runner) -> None: """Save the current checkpoint and delete outdated checkpoint. Args: runner (Runner): The runner of the training process. """ if self.by_epoch: ckpt_filename = self.args.get( 'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1) else: ckpt_filename = self.args.get( 'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1) runner.save_checkpoint( self.out_dir, ckpt_filename, self.file_client_args, save_optimizer=self.save_optimizer, save_param_scheduler=self.save_param_scheduler, by_epoch=self.by_epoch, **self.args) runner.message_hub.update_info( 'last_ckpt', self.file_client.join_path(self.out_dir, ckpt_filename)) # remove other checkpoints if self.max_keep_ckpts > 0: if self.by_epoch: name = 'epoch_{}.pth' current_ckpt = runner.epoch + 1 else: name = 'iter_{}.pth' current_ckpt = runner.iter + 1 redundant_ckpts = range( current_ckpt - self.max_keep_ckpts * self.interval, 0, -self.interval) filename_tmpl = self.args.get('filename_tmpl', name) for _step in redundant_ckpts: ckpt_path = self.file_client.join_path( self.out_dir, filename_tmpl.format(_step)) if self.file_client.isfile(ckpt_path): self.file_client.remove(ckpt_path) else: break @master_only def _save_best_checkpoint(self, runner, metrics) -> None: """Save the current checkpoint and delete outdated checkpoint. Args: runner (Runner): The runner of the training process. """ if not self.save_best: return if self.by_epoch: ckpt_filename = self.args.get( 'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1) cur_type, cur_time = 'epoch', runner.epoch + 1 else: ckpt_filename = self.args.get( 'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1) cur_type, cur_time = 'iter', runner.iter + 1 # save best logic # get score from messagehub # notice `_get_metirc_score` helps to infer # self.rule when self.save_best is `auto` key_score = self._get_metric_score(metrics) if 'best_score' not in runner.message_hub.runtime_info: best_score = self.init_value_map[self.rule] else: best_score = runner.message_hub.get_info('best_score') if not key_score or not self.is_better_than(key_score, best_score): return best_score = key_score runner.message_hub.update_info('best_score', best_score) if self.best_ckpt_path and self.file_client.isfile( self.best_ckpt_path): self.file_client.remove(self.best_ckpt_path) runner.logger.info( f'The previous best checkpoint {self.best_ckpt_path} ' 'is removed') best_ckpt_name = f'best_{self.key_indicator}_{ckpt_filename}' self.best_ckpt_path = self.file_client.join_path( # type: ignore # noqa: E501 self.out_dir, best_ckpt_name) runner.message_hub.update_info('best_ckpt', self.best_ckpt_path) runner.save_checkpoint( self.out_dir, filename=best_ckpt_name, file_client_args=self.file_client_args, save_optimizer=False, save_param_scheduler=False, by_epoch=False) runner.logger.info( f'The best checkpoint with {best_score:0.4f} {self.key_indicator} ' f'at {cur_time} {cur_type} is saved to {best_ckpt_name}.') def _init_rule(self, rule, key_indicator) -> None: """Initialize rule, key_indicator, comparison_func, and best score. Here is the rule to determine which rule is used for key indicator when the rule is not specific (note that the key indicator matching is case- insensitive): 1. If the key indicator is in ``self.greater_keys``, the rule will be specified as 'greater'. 2. Or if the key indicator is in ``self.less_keys``, the rule will be specified as 'less'. 3. Or if any one item in ``self.greater_keys`` is a substring of key_indicator , the rule will be specified as 'greater'. 4. Or if any one item in ``self.less_keys`` is a substring of key_indicator , the rule will be specified as 'less'. Args: rule (str | None): Comparison rule for best score. key_indicator (str | None): Key indicator to determine the comparison rule. """ if rule not in self.rule_map and rule is not None: raise KeyError('rule must be greater, less or None, ' f'but got {rule}.') if rule is None and key_indicator != 'auto': # `_lc` here means we use the lower case of keys for # case-insensitive matching key_indicator_lc = key_indicator.lower() greater_keys = [key.lower() for key in self.greater_keys] less_keys = [key.lower() for key in self.less_keys] if key_indicator_lc in greater_keys: rule = 'greater' elif key_indicator_lc in less_keys: rule = 'less' elif any(key in key_indicator_lc for key in greater_keys): rule = 'greater' elif any(key in key_indicator_lc for key in less_keys): rule = 'less' else: raise ValueError('Cannot infer the rule for key ' f'{key_indicator}, thus a specific rule ' 'must be specified.') self.rule = rule self.key_indicator = key_indicator if self.rule is not None: self.is_better_than = self.rule_map[self.rule] def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs=Optional[dict]) -> None: """Save the checkpoint and synchronize buffers after each iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict, optional): Outputs from model. Defaults to None. """ if self.by_epoch: return # save checkpoint for following cases: # 1. every ``self.interval`` iterations # 2. reach the last iteration of training if self.every_n_train_iters(runner, self.interval) or \ (self.save_last and self.is_last_train_iter(runner)): runner.logger.info( f'Saving checkpoint at {runner.iter + 1} iterations') self._save_checkpoint(runner)