# 15 minutes to get started with MMEngine In this tutorial, we'll take training a ResNet-50 model on CIFAR-10 dataset as an example. We will build a complete and configurable pipeline for both training and validation in only 80 lines of code with `MMEgnine`. The whole process includes the following steps: 1. [Build a Model](#build-a-model) 2. [Build a Dataset and DataLoader](#build-a-dataset-and-dataloader) 3. [Build a Evaluation Metrics](#build-a-evaluation-metrics) 4. [Build a Runner and Run the Task](#build-a-runner-and-run-the-task) ## Build a Model First, we need to build a **model**. In MMEngine, the model should inherit from `BaseModel`. Aside from parameters representing inputs from the dataset, its `forward` method needs to accept an extra argument called `mode`: - for training, the value of `mode` is "loss," and the `forward` method should return a `dict` containing the key "loss". - for validation, the value of `mode` is "predict", and the forward method should return results containing both predictions and labels. ```python import torch.nn.functional as F import torchvision from mmengine.model import BaseModel class MMResNet50(BaseModel): def __init__(self): super().__init__() self.resnet = torchvision.models.resnet50() def forward(self, imgs, labels, mode): x = self.resnet(imgs) if mode == 'loss': return {'loss': F.cross_entropy(x, labels)} elif mode == 'predict': return x, labels ``` ## Build a Dataset and DataLoader Next, we need to create **Dataset** and **DataLoader** for training and validation. For basic training and validation, we can simply use built-in datasets supported in TorchVision. ```python import torchvision.transforms as transforms from torch.utils.data import DataLoader norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201]) train_dataloader = DataLoader(batch_size=32, shuffle=True, dataset=torchvision.datasets.CIFAR10( 'data/cifar10', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(**norm_cfg) ]))) val_dataloader = DataLoader(batch_size=32, shuffle=False, dataset=torchvision.datasets.CIFAR10( 'data/cifar10', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(**norm_cfg) ]))) ``` ## Build a Evaluation Metrics To validate and test the model, we need to define a **Metric** called accuracy to evaluate the model. This metric needs inherit from `BaseMetric` and implements the `process` and `compute_metrics` methods where the `process` method accepts the output of the dataset and other outputs when `mode="predict"`. The output data at this scenario is a batch of data. After processing this batch of data, we save the information to `self.results` property. `compute_metrics` accepts a `results` parameter. The input `results` of `compute_metrics` is all the information saved in `process` (In the case of a distributed environment, `results` are the information collected from all `process` in all the processes). Use these information to calculate and return a `dict` that holds the results of the evaluation metrics ```python from mmengine.evaluator import BaseMetric class Accuracy(BaseMetric): def process(self, data_batch, data_samples): score, gt = data_samples # save the middle result of a batch to `self.results` self.results.append({ 'batch_size': len(gt), 'correct': (score.argmax(dim=1) == gt).sum().cpu(), }) def compute_metrics(self, results): total_correct = sum(item['correct'] for item in results) total_size = sum(item['batch_size'] for item in results) # return the dict containing the eval results # the key is the name of the metric name return dict(accuracy=100 * total_correct / total_size) ``` ## Build a Runner and Run the Task Now we can build a **Runner** with previously defined `Model`, `DataLoader`, and `Metrics`, and some other configs shown as follows: ```python from torch.optim import SGD from mmengine.runner import Runner runner = Runner( # the model used for training and validation. # Needs to meet specific interface requirements model=MMResNet50(), # working directory which saves training logs and weight files work_dir='./work_dir', # train dataloader needs to meet the PyTorch data loader protocol train_dataloader=train_dataloader, # optimize wrapper for optimization with additional features like # AMP, gradtient accumulation, etc optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)), # trainging coinfs for specifying training epoches, verification intervals, etc train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1), # validation dataloaer also needs to meet the PyTorch data loader protocol val_dataloader=val_dataloader, # validation configs for specifying additional parameters required for validation val_cfg=dict(), # validation evaluator. The default one is used here val_evaluator=dict(type=Accuracy), ) runner.train() ``` Finally, let's put all the codes above together into a complete script that uses the `MMEngine` executor for training and validation: <a href="https://colab.research.google.com/github/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/get_started.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a> ```python import torch.nn.functional as F import torchvision import torchvision.transforms as transforms from torch.optim import SGD from torch.utils.data import DataLoader from mmengine.evaluator import BaseMetric from mmengine.model import BaseModel from mmengine.runner import Runner class MMResNet50(BaseModel): def __init__(self): super().__init__() self.resnet = torchvision.models.resnet50() def forward(self, imgs, labels, mode): x = self.resnet(imgs) if mode == 'loss': return {'loss': F.cross_entropy(x, labels)} elif mode == 'predict': return x, labels class Accuracy(BaseMetric): def process(self, data_batch, data_samples): score, gt = data_samples self.results.append({ 'batch_size': len(gt), 'correct': (score.argmax(dim=1) == gt).sum().cpu(), }) def compute_metrics(self, results): total_correct = sum(item['correct'] for item in results) total_size = sum(item['batch_size'] for item in results) return dict(accuracy=100 * total_correct / total_size) norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201]) train_dataloader = DataLoader(batch_size=32, shuffle=True, dataset=torchvision.datasets.CIFAR10( 'data/cifar10', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(**norm_cfg) ]))) val_dataloader = DataLoader(batch_size=32, shuffle=False, dataset=torchvision.datasets.CIFAR10( 'data/cifar10', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(**norm_cfg) ]))) runner = Runner( model=MMResNet50(), work_dir='./work_dir', train_dataloader=train_dataloader, optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)), train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1), val_dataloader=val_dataloader, val_cfg=dict(), val_evaluator=dict(type=Accuracy), ) runner.train() ``` Training log would be similar to this: ``` 2022/08/22 15:51:53 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: linux Python: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0] CUDA available: True numpy_random_seed: 1513128759 GPU 0: NVIDIA GeForce GTX 1660 SUPER CUDA_HOME: /usr/local/cuda ... 2022/08/22 15:51:54 - mmengine - INFO - Checkpoints will be saved to /home/mazerun/work_dir by HardDiskBackend. 2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][10/1563] lr: 1.0000e-03 eta: 0:18:23 time: 0.1414 data_time: 0.0077 memory: 392 loss: 5.3465 2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][20/1563] lr: 1.0000e-03 eta: 0:11:29 time: 0.0354 data_time: 0.0077 memory: 392 loss: 2.7734 2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][30/1563] lr: 1.0000e-03 eta: 0:09:10 time: 0.0352 data_time: 0.0076 memory: 392 loss: 2.7789 2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][40/1563] lr: 1.0000e-03 eta: 0:08:00 time: 0.0353 data_time: 0.0073 memory: 392 loss: 2.5725 2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][50/1563] lr: 1.0000e-03 eta: 0:07:17 time: 0.0347 data_time: 0.0073 memory: 392 loss: 2.7382 2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][60/1563] lr: 1.0000e-03 eta: 0:06:49 time: 0.0347 data_time: 0.0072 memory: 392 loss: 2.5956 2022/08/22 15:51:58 - mmengine - INFO - Epoch(train) [1][70/1563] lr: 1.0000e-03 eta: 0:06:28 time: 0.0348 data_time: 0.0072 memory: 392 loss: 2.7351 ... 2022/08/22 15:52:50 - mmengine - INFO - Saving checkpoint at 1 epochs 2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][10/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 392 2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][20/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 308 2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][30/313] eta: 0:00:03 time: 0.0123 data_time: 0.0047 memory: 308 ... 2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000 ``` In addition to these basic components, you can also use **executor** to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see [OptimWrapper](../tutorials/optim_wrapper.md)), configuring the learning rate decay curve (see [Metrics & Evaluator](../tutorials/evaluation.md)), and etc.