Skip to content
Snippets Groups Projects
Unverified Commit 64b1d183 authored by RangiLyu's avatar RangiLyu Committed by GitHub
Browse files

Add runner unit tests. (#68)

* add runner unit tests

* update

* update

* add test custom loop and hook

* add test model wrapper

* add test setup env

* fix typo

* fix launcher

* fix typo

* test default scope

* add logger test

* fix dataloader

* add test loop

* resolve comments

* resolve comments
parent c87adc66
No related branches found
No related tags found
No related merge requests found
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
from unittest.mock import Mock
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from mmengine.runner.loop import (EpochBasedTrainLoop, IterBasedTrainLoop,
TestLoop, ValLoop)
class ToyDataset(Dataset):
META = dict() # type: ignore
data = np.zeros((30, 1, 1, 1))
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
return torch.from_numpy(self.data[index])
class TestLoops(TestCase):
def setUp(self) -> None:
self.runner = Mock()
self.runner.call_hooks = Mock()
self.runner.model = Mock()
self.runner.epoch = 0
self.runner.iter = 0
self.runner.inner_iter = 0
self.runner.model.train_step = Mock()
self.runner.model.val_step = Mock()
self.evaluator = Mock()
self.evaluator.process = Mock()
self.evaluator.evaluate = Mock()
def test_epoch_based_train_loop(self):
train_loop = EpochBasedTrainLoop(
runner=self.runner, loader=DataLoader(ToyDataset()), max_epoch=3)
train_loop.run()
assert train_loop.runner.epoch == 3
assert train_loop.runner.iter == 90
def test_iter_based_train_loop(self):
train_loop = IterBasedTrainLoop(
runner=self.runner, loader=DataLoader(ToyDataset()), max_iter=25)
train_loop.run()
assert train_loop.runner.epoch == 0
assert train_loop.runner.iter == 25
def test_val_loop(self):
val_loop = ValLoop(
runner=self.runner,
loader=DataLoader(ToyDataset()),
evaluator=self.evaluator)
val_loop.run()
def test_test_loop(self):
test_loop = TestLoop(
runner=self.runner,
loader=DataLoader(ToyDataset()),
evaluator=self.evaluator)
test_loop.run()
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import multiprocessing as mp
import os
import os.path as osp
import platform
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD
from torch.utils.data import DataLoader, Dataset
from mmengine.config import Config
from mmengine.evaluator import BaseEvaluator
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger
from mmengine.model.wrappers import MMDataParallel, MMDistributedDataParallel
from mmengine.optim.scheduler import MultiStepLR
from mmengine.registry import (DATASETS, EVALUATORS, HOOKS, LOOPS,
MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
Registry)
from mmengine.runner import Runner
from mmengine.runner.loop import EpochBasedTrainLoop, IterBasedTrainLoop
@MODELS.register_module()
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv2(F.relu(self.conv1(x)))
def train_step(self, *inputs, **kwargs):
pass
def val_step(self, *inputs, **kwargs):
pass
@DATASETS.register_module()
class ToyDataset(Dataset):
META = dict() # type: ignore
data = np.zeros((10, 1, 1, 1))
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
return torch.from_numpy(self.data[index])
@EVALUATORS.register_module()
class ToyEvaluator(BaseEvaluator):
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
class TestRunner(TestCase):
def setUp(self):
self.temp_dir = tempfile.gettempdir()
full_cfg = dict(
model=dict(type='ToyModel'),
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
optimizer=dict(type='SGD', lr=0.01),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
evaluator=dict(type='ToyEvaluator'),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
logger=dict(type='TextLoggerHook'),
optimizer=dict(type='OptimizerHook', grad_clip=False),
param_scheduler=dict(type='ParamSchedulerHook')),
env_cfg=dict(dist_params=dict(backend='nccl'), ),
log_cfg=dict(log_level='INFO'),
work_dir=self.temp_dir)
self.full_cfg = Config(full_cfg)
def tearDown(self):
os.removedirs(self.temp_dir)
def test_build_from_cfg(self):
runner = Runner.build_from_cfg(cfg=self.full_cfg)
# test env params
assert runner.distributed is False
assert runner.seed is not None
assert runner.work_dir == self.temp_dir
# model should be full initialized
assert isinstance(runner.model, (nn.Module, MMDataParallel))
# lazy init
assert isinstance(runner.optimzier, dict)
assert isinstance(runner.scheduler, list)
assert isinstance(runner.train_dataloader, dict)
assert isinstance(runner.val_dataloader, dict)
assert isinstance(runner.test_dataloader, dict)
assert isinstance(runner.evaluator, dict)
# after runner.train(), train and val loader should be initialized
# test loader should still be config
runner.train()
assert isinstance(runner.test_dataloader, dict)
assert isinstance(runner.train_dataloader, DataLoader)
assert isinstance(runner.val_dataloader, DataLoader)
assert isinstance(runner.optimzier, SGD)
assert isinstance(runner.evaluator, ToyEvaluator)
runner.test()
assert isinstance(runner.test_dataloader, DataLoader)
# cannot run runner.test() without evaluator cfg
with self.assertRaisesRegex(AssertionError,
'evaluator does not exist'):
cfg = copy.deepcopy(self.full_cfg)
cfg.pop('evaluator')
runner = Runner.build_from_cfg(cfg)
runner.test()
# cannot run runner.train() without optimizer cfg
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
cfg = copy.deepcopy(self.full_cfg)
cfg.pop('optimizer')
runner = Runner.build_from_cfg(cfg)
runner.train()
# can run runner.train() without validation
cfg = copy.deepcopy(self.full_cfg)
cfg.validation_cfg = None
cfg.pop('evaluator')
cfg.pop('val_dataloader')
runner = Runner.build_from_cfg(cfg)
runner.train()
def test_manually_init(self):
model = ToyModel()
optimizer = SGD(
model.parameters(),
lr=0.01,
)
class ToyHook(Hook):
def before_train_epoch(self, runner):
pass
class ToyHook2(Hook):
def after_train_epoch(self, runner):
pass
toy_hook = ToyHook()
toy_hook2 = ToyHook2()
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
val_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
evaluator=ToyEvaluator(),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1),
default_hooks=dict(param_scheduler=toy_hook),
custom_hooks=[toy_hook2])
runner.train()
hook_names = [hook.__class__.__name__ for hook in runner.hooks]
# test custom hook registered in runner
assert 'ToyHook2' in hook_names
# test default hook is replaced
assert 'ToyHook' in hook_names
# test other default hooks
assert 'IterTimerHook' in hook_names
# cannot run runner.test() when test_dataloader is None
with self.assertRaisesRegex(AssertionError,
'test dataloader does not exist'):
runner.test()
# cannot run runner.train() when optimizer is None
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
val_dataloader=DataLoader(dataset=ToyDataset()),
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
evaluator=ToyEvaluator(),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1))
runner.train()
# cannot run runner.train() when validation_cfg is set
# but val loader is None
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1))
runner.train()
# run runner.train() without validation
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=None)
runner.train()
def test_setup_env(self):
# temporarily store system setting
sys_start_mehod = mp.get_start_method(allow_none=True)
# pop and temp save system env vars
sys_omp_threads = os.environ.pop('OMP_NUM_THREADS', default=None)
sys_mkl_threads = os.environ.pop('MKL_NUM_THREADS', default=None)
# test default multi-processing setting when workers > 1
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 4
cfg.test_dataloader.num_workers = 4
cfg.val_dataloader.num_workers = 4
Runner.build_from_cfg(cfg)
assert os.getenv('OMP_NUM_THREADS') == '1'
assert os.getenv('MKL_NUM_THREADS') == '1'
if platform.system() != 'Windows':
assert mp.get_start_method() == 'fork'
# test default multi-processing setting when workers <= 1
os.environ.pop('OMP_NUM_THREADS')
os.environ.pop('MKL_NUM_THREADS')
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 0
cfg.test_dataloader.num_workers = 0
cfg.val_dataloader.num_workers = 0
Runner.build_from_cfg(cfg)
assert 'OMP_NUM_THREADS' not in os.environ
assert 'MKL_NUM_THREADS' not in os.environ
# test manually set env var
os.environ['OMP_NUM_THREADS'] = '3'
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 2
cfg.test_dataloader.num_workers = 2
cfg.val_dataloader.num_workers = 2
Runner.build_from_cfg(cfg)
assert os.getenv('OMP_NUM_THREADS') == '3'
# test manually set mp start method
cfg = copy.deepcopy(self.full_cfg)
cfg.env_cfg.mp_cfg = dict(mp_start_method='spawn')
Runner.build_from_cfg(cfg)
assert mp.get_start_method() == 'spawn'
# revert setting to avoid affecting other programs
if sys_start_mehod:
mp.set_start_method(sys_start_mehod, force=True)
if sys_omp_threads:
os.environ['OMP_NUM_THREADS'] = sys_omp_threads
else:
os.environ.pop('OMP_NUM_THREADS')
if sys_mkl_threads:
os.environ['MKL_NUM_THREADS'] = sys_mkl_threads
else:
os.environ.pop('MKL_NUM_THREADS')
def test_logger(self):
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner.logger, MMLogger)
# test latest logger and runner logger are the same
assert runner.logger.level == logging.INFO
assert MMLogger.get_instance(
).instance_name == runner.logger.instance_name
# test latest message hub and runner message hub are the same
assert isinstance(runner.message_hub, MessageHub)
assert MessageHub.get_instance(
).instance_name == runner.message_hub.instance_name
# test set log level in cfg
self.full_cfg.log_cfg.log_level = 'DEBUG'
runner = Runner.build_from_cfg(self.full_cfg)
assert runner.logger.level == logging.DEBUG
@patch('torch.distributed.get_rank', lambda: 0)
@patch('torch.distributed.is_initialized', lambda: True)
@patch('torch.distributed.is_available', lambda: True)
def test_model_wrapper(self):
# non-distributed model build from config
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner.model, MMDataParallel)
# non-distributed model build manually
model = ToyModel()
runner = Runner(
model=model, train_cfg=dict(by_epoch=True, max_epochs=3))
assert isinstance(runner.model, MMDataParallel)
# distributed model build from config
cfg = copy.deepcopy(self.full_cfg)
cfg.launcher = 'pytorch'
runner = Runner.build_from_cfg(cfg)
assert isinstance(runner.model, MMDistributedDataParallel)
# distributed model build manually
model = ToyModel()
runner = Runner(
model=model,
train_cfg=dict(by_epoch=True, max_epochs=3),
env_cfg=dict(dist_params=dict(backend='nccl')),
launcher='pytorch')
assert isinstance(runner.model, MMDistributedDataParallel)
# custom model wrapper
@MODEL_WRAPPERS.register_module()
class CustomModelWrapper:
def train_step(self, *inputs, **kwargs):
pass
def val_step(self, *inputs, **kwargs):
pass
cfg = copy.deepcopy(self.full_cfg)
cfg.model_wrapper = dict(type='CustomModelWrapper')
runner = Runner.build_from_cfg(cfg)
assert isinstance(runner.model, CustomModelWrapper)
def test_default_scope(self):
TOY_SCHEDULERS = Registry(
'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy')
@TOY_SCHEDULERS.register_module()
class ToyScheduler(MultiStepLR):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.full_cfg.param_scheduler = dict(
type='ToyScheduler', milestones=[1, 2])
self.full_cfg.default_scope = 'toy'
runner = Runner.build_from_cfg(self.full_cfg)
runner.train()
assert isinstance(runner.scheduler[0], ToyScheduler)
def test_checkpoint(self):
runner = Runner.build_from_cfg(self.full_cfg)
runner.run()
path = osp.join(self.temp_dir, 'epoch_3.pth')
runner.save_checkpoint(path)
assert osp.exists(path)
ckpt = torch.load(path)
# scheduler should saved in the checkpoint
assert isinstance(ckpt['scheduler'], list)
# load by a new runner but not resume
runner2 = Runner.build_from_cfg(self.full_cfg)
runner2.load_checkpoint(path, resume=False)
self.assertNotEqual(runner2.epoch, runner.epoch)
self.assertNotEqual(runner2.iter, runner.iter)
# load by a new runner and resume
runner3 = Runner.build_from_cfg(self.full_cfg)
runner3.load_checkpoint(path, resume=True)
self.assertEqual(runner3.epoch, runner.epoch)
self.assertEqual(runner3.iter, runner.iter)
def test_custom_hooks(self):
results = []
targets = [0, 1, 2]
@HOOKS.register_module()
class ToyHook(Hook):
def before_train_epoch(self, runner):
results.append(runner.epoch)
self.full_cfg.custom_hooks = [dict(type='ToyHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
# test hook registered in runner
hook_names = [hook.__class__.__name__ for hook in runner.hooks]
assert 'ToyHook' in hook_names
# test hook behavior
runner.train()
for result, target, in zip(results, targets):
self.assertEqual(result, target)
def test_iter_based(self):
self.full_cfg.train_cfg = dict(by_epoch=False, max_iters=30)
# test iter and epoch counter of IterBasedTrainLoop
epoch_results = []
iter_results = []
inner_iter_results = []
iter_targets = [i for i in range(30)]
@HOOKS.register_module()
class TestIterHook(Hook):
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner):
iter_results.append(runner.iter)
inner_iter_results.append(runner.inner_iter)
self.full_cfg.custom_hooks = [dict(type='TestIterHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, IterBasedTrainLoop)
runner.train()
self.assertEqual(len(epoch_results), 1)
self.assertEqual(epoch_results[0], 0)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(inner_iter_results, iter_targets):
self.assertEqual(result, target)
def test_epoch_based(self):
self.full_cfg.train_cfg = dict(by_epoch=True, max_epochs=3)
# test iter and epoch counter of EpochBasedTrainLoop
epoch_results = []
epoch_targets = [i for i in range(3)]
iter_results = []
iter_targets = [i for i in range(10 * 3)]
inner_iter_results = []
inner_iter_targets = [i for i in range(10)] * 3 # train and val
@HOOKS.register_module()
class TestEpochHook(Hook):
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, data_batch=None):
iter_results.append(runner.iter)
inner_iter_results.append(runner.inner_iter)
self.full_cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, EpochBasedTrainLoop)
runner.train()
for result, target, in zip(epoch_results, epoch_targets):
self.assertEqual(result, target)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(inner_iter_results, inner_iter_targets):
self.assertEqual(result, target)
def test_custom_loop(self):
# test custom loop with additional hook
@LOOPS.register_module()
class CustomTrainLoop(EpochBasedTrainLoop):
"""custom train loop with additional warmup stage."""
def __init__(self, runner, loader, max_epochs, warmup_loader,
max_warmup_iters):
super().__init__(
runner=runner, loader=loader, max_epochs=max_epochs)
self.warmup_loader = self.runner.build_dataloader(
warmup_loader)
self.max_warmup_iters = max_warmup_iters
def run(self):
self.runner.call_hooks('before_run')
for idx, data_batch in enumerate(self.warmup_loader):
self.warmup_iter(data_batch)
if idx >= self.max_warmup_iters:
break
self.runner.call_hooks('before_train_epoch')
while self.runner.iter < self._max_iter:
data_batch = next(self.loader)
self.run_iter(data_batch)
self.runner.call_hooks('after_train_epoch')
self.runner.call_hooks('after_run')
def warmup_iter(self, data_batch):
self.runner.call_hooks(
'before_warmup_iter', args=dict(data_batch=data_batch))
outputs = self.runner.model.train_step(data_batch)
self.runner.call_hooks(
'after_warmup_iter',
args=dict(data_batch=data_batch, outputs=outputs))
before_warmup_iter_results = []
after_warmup_iter_results = []
@HOOKS.register_module()
class TestWarmupHook(Hook):
"""test custom train loop."""
def before_warmup_iter(self, data_batch=None):
before_warmup_iter_results.append('before')
def after_warmup_iter(self, data_batch=None, outputs=None):
after_warmup_iter_results.append('after')
self.full_cfg.train_cfg = dict(
type='CustomTrainLoop',
max_epochs=3,
warmup_loader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
max_warmup_iters=5)
self.full_cfg.custom_hooks = [dict(type='TestWarmupHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, CustomTrainLoop)
runner.train()
# test custom hook triggered normally
self.assertEqual(len(before_warmup_iter_results), 5)
self.assertEqual(len(after_warmup_iter_results), 5)
for before, after in zip(before_warmup_iter_results,
after_warmup_iter_results):
self.assertEqual(before, 'before')
self.assertEqual(after, 'after')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment