Explore projects
-
wiback / senf
BSD 3-Clause "New" or "Revised" LicenseThe Simple and Extensible Network Framework, Linux, C++11, Documentation at https://senf.wiback.org
Updated -
Jiaying Cheng / benchmark-ev-peak-shaving
MIT LicenseUpdated -
MLS-public / Federated Data Augmentation
MIT LicenseUpdated -
ProEnergie / Loadprofile-Analysis-Tool
GNU General Public License v3.0 or laterRepository for the Loadprofile-Analysis-Tool developed in the research project ProEnergie - Bayern.
The tool is used for analyzing load and generation profiles (time series) by generating different plots and calculating key figures.
Updated -
UPM / SanDy PALM
GNU Affero General Public License v3.0Updated -
Updated
-
IPK_AUT / Converging / Collision Detection
BSD 3-Clause "New" or "Revised" LicenseUpdated -
IPA Quantum / QKMTuner
MIT LicenseUpdated -
TRAIN / TTV - TRAIN Trust Validator
Apache License 2.0Updated -
Eine 3D-Interpolation des Pulsfrequenz, Prozentuale Laserleistungseinstellung, und der Leistung in Watt Phasenraums. Zusätzlich kann man hiermit die Prozentuale Laserleistungseinstellung finden die dem realen Leistungsmaxmium entpricht.
Updated -
-
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time from a stream of data, while mitigating the detrimental phenomenon of catastrophic forgetting. In this paper, we focus on learning an optimal representation between previous class prototypes and newly encountered ones. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios. Therefore, we introduce a contrastive loss that incorporates new classes into the latent representation by reducing the intra-class distance and increasing the inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Empirical evaluations conducted on both the CIFAR-10 and CIFAR-100 dataset for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches.
Updated -
Updated
-
UpdatedUpdated
-
pqc-ima / Kiwi
GNU General Public License v3.0 onlyUpdatedUpdated -
pqc-ima / liboqs
MIT LicenseUpdatedUpdated