Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import pytest
from mmengine.structures import LabelData
class TestLabelData(TestCase):
def test_label_to_onehot(self):
item = torch.tensor([1], dtype=torch.int64)
num_classes = 10
onehot = LabelData.label_to_onehot(label=item, num_classes=num_classes)
assert tuple(onehot.shape) == (num_classes, )
assert onehot.device == item.device
# item is not onehot
with self.assertRaises(AssertionError):
LabelData.label_to_onehot(label='item', num_classes=num_classes)
# item'max bigger than num_classes
with self.assertRaises(AssertionError):
LabelData.label_to_onehot(
torch.tensor([11], dtype=torch.int64), num_classes)
onehot = LabelData.label_to_onehot(
label=torch.tensor([], dtype=torch.int64), num_classes=num_classes)
assert (onehot == torch.zeros((num_classes, ),
dtype=torch.int64)).all()
def test_onehot_to_label(self):
# item is not onehot
with self.assertRaisesRegex(
ValueError,
'input is not one-hot and can not convert to label'):
LabelData.onehot_to_label(
onehot=torch.tensor([2], dtype=torch.int64))
with self.assertRaises(AssertionError):
LabelData.onehot_to_label(onehot='item')
item = torch.arange(0, 9)
onehot = LabelData.label_to_onehot(item, num_classes=10)
label = LabelData.onehot_to_label(onehot)
assert (label == item).all()
assert label.device == item.device
item = torch.tensor([2])
onehot = LabelData.label_to_onehot(item, num_classes=10)
label = LabelData.onehot_to_label(onehot)
assert label == item
assert label.device == item.device
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='GPU is required!')
def test_cuda(self):
item = torch.arange(0, 9).cuda()
onehot = LabelData.label_to_onehot(item, num_classes=10)
assert item.device == onehot.device
label = LabelData.onehot_to_label(onehot)
assert label.device == onehot.device