Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Any, List, Optional, Tuple, Dict, Generator, Union
from collections import OrderedDict
import shutil
import pickle
import numpy as np
import tempfile
import torch
import os.path as osp
from torch import Tensor
from torch._utils import (_flatten_dense_tensors, _take_tensors,
_unflatten_dense_tensors)
from torch import distributed as torch_dist
from torch.distributed import ProcessGroup
import mmengine
from .utils import (get_world_size, get_rank, get_backend, get_dist_info,
get_default_group, barrier, get_data_device,
get_comm_device, cast_data_device)
from mmengine.utils.version_utils import digit_version
from mmengine.utils.parrots_wrapper import TORCH_VERSION
def _get_reduce_op(name: str) -> torch_dist.ReduceOp:
'sum': torch_dist.ReduceOp.SUM,
'product': torch_dist.ReduceOp.PRODUCT,
'min': torch_dist.ReduceOp.MIN,
'max': torch_dist.ReduceOp.MAX,
'band': torch_dist.ReduceOp.BAND,
'bor': torch_dist.ReduceOp.BOR,
'bxor': torch_dist.ReduceOp.BXOR,
}
if name.lower() not in op_mappings:
raise ValueError(
f'reduce op should be one of {op_mappings.keys()}, bug got {name}')
return op_mappings[name.lower()]
def all_reduce(data: Tensor,
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""Reduces the tensor data across all machines in such a way that all get
the final result.
After the call ``data`` is going to be bitwise identical in all
processes.
Note:
Calling ``all_reduce`` in non-distributed environment does nothing.
Args:
data (Tensor): Input and output of the collective. The function
operates in-place.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> dist.all_reduce(data)
>>> data
tensor([0, 1])
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.all_reduce(data, op=dist.ReduceOp.SUM)
>>> data
tensor([4, 6]) # Rank 0
tensor([4, 6]) # Rank 1
"""
world_size = get_world_size(group)
if world_size > 1:
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
# pytorch does not support 'mean' operation so we fall back to support
# it with 'sum' operation.
if op.lower() == 'mean':
torch_dist.all_reduce(data_on_device, _get_reduce_op('sum'), group)
# When the type of `data_on_device` is int64,
# `data_on_device.div_(world_size)` will appear RuntimeError:
# result type Float can't be cast to the desired output type Long.
data_on_device = data_on_device / world_size # type: ignore
torch_dist.all_reduce(data_on_device, _get_reduce_op(op), group)
cast_data_device(data_on_device, input_device, out=data)
def all_gather(data: Tensor,
group: Optional[ProcessGroup] = None) -> List[Tensor]:
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Gather data from the whole group in a list.
Note:
Calling ``all_gather`` in non-distributed environment does nothing
and just returns a list containing :attr:`data` itself.
Note:
Unlike PyTorch ``torch.distributed.all_gather``, :meth:`all_gather` in
MMEngine does not pass in an empty list ``gather_list`` and returns
the ``gather_list`` directly, which is more convenient. The difference
between their interfaces is as below:
- MMEngine: all_gather(data, group) -> gather_list
- PyTorch: all_gather(gather_list, data, group) -> None
Args:
data (Tensor): Tensor to be gathered.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: Return a list containing data from the whole group if
in distributed environment, otherwise a list only containing
:attr:`data` itself.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> output = dist.all_gather(data)
>>> output
[tensor([0, 1])]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> output = dist.all_gather(data)
>>> output
[tensor([1, 2]), tensor([3, 4])] # Rank 0
[tensor([1, 2]), tensor([3, 4])] # Rank 1
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
gather_list = [
torch.empty_like(data, device=backend_device)
for _ in range(world_size)
]
torch_dist.all_gather(gather_list, data_on_device, group)
return cast_data_device(gather_list, input_device) # type: ignore
def gather(data: Tensor,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> List[Optional[Tensor]]:
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""Gather data from the whole group to ``dst`` process.
Note:
Calling ``gather`` in non-distributed environment dose nothing
and just returns a list containing :attr:`data` itself.
Note:
``NCCL`` backend does not support ``gather``.
Note:
Unlike PyTorch ``torch.distributed.gather``, :meth:`gather` in
MMEngine does not pass in an empty list ``gather_list`` and returns
the ``gather_list`` directly, which is more convenient. The difference
between their interfaces is as below:
- MMEngine: gather(data, dst, group) -> gather_list
- PyTorch: gather(data, gather_list, dst, group) -> None
Args:
data (Tensor): Tensor to be gathered. CUDA tensor is not supported.
dst (int): Destination rank. Defaults to 0.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: ``dst`` process will get a list of tensor gathering from
the whole group. Other process will get a empty list. If in
non-distributed environment, just return a list containing
:attr:`data` itself.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> output = dist.gather(data)
>>> output
[tensor([0, 1])]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> output = dist.gather(data)
>>> output
[tensor([1, 2]), tensor([3, 4])] # Rank 0
[] # Rank 1
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
gather_list = [
torch.empty_like(data, device=backend_device)
for _ in range(world_size)
]
torch_dist.gather(data, gather_list, dst, group)
if get_rank(group) == dst:
return cast_data_device(gather_list, input_device) # type: ignore
else:
return gather_list
def broadcast(data: Tensor,
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Broadcast the data from ``src`` process to the whole group.
``data`` must have the same number of elements in all processes
participating in the collective.
Note:
Calling ``broadcast`` in non-distributed environment does nothing.
Args:
data (Tensor): Data to be sent if ``src`` is the rank of current
process, and data to be used to save received data otherwise.
src (int): Source rank. Defaults to 0.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> dist.broadcast(data)
>>> data
tensor([0, 1])
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.broadcast(data)
>>> data
tensor([1, 2]) # Rank 0
tensor([1, 2]) # Rank 1
"""
if get_world_size(group) > 1:
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
torch_dist.broadcast(data_on_device, src, group)
if get_rank(group) != src:
cast_data_device(data_on_device, input_device, data)
def sync_random_seed(group: Optional[ProcessGroup] = None) -> int:
"""Synchronize a random seed to all processes.
In distributed sampling, different ranks should sample non-overlapped
data in the dataset. Therefore, this function is used to make sure that
each rank shuffles the data indices in the same order based
on the same seed. Then different ranks could use different indices
to select non-overlapped data from the same data list.
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
Args:
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
int: Random seed.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> seed = dist.sync_random_seed()
>>> seed # which a random number
587791752
>>> distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> seed = dist.sync_random_seed()
>>> seed
587791752 # Rank 0
587791752 # Rank 1
"""
seed = np.random.randint(2**31)
if get_world_size(group) == 1:
return seed
if group is None:
group = get_default_group()
backend_device = get_comm_device(group)
random_num = torch.tensor(seed, dtype=torch.int32).to(backend_device)
random_num = torch.tensor(0, dtype=torch.int32).to(backend_device)
torch_dist.broadcast(random_num, src=0, group=group)
return random_num.item()
def _object_to_tensor(obj: Any) -> Tuple[Tensor, Tensor]:
"""Serialize picklable python object to tensor."""
byte_storage = torch.ByteStorage.from_buffer(pickle.dumps(obj))
# Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor
# and specifying dtype. Otherwise, it will cause 100X slowdown.
# See: https://github.com/pytorch/pytorch/issues/65696
byte_tensor = torch.ByteTensor(byte_storage)
local_size = torch.LongTensor([byte_tensor.numel()])
return byte_tensor, local_size
def _tensor_to_object(tensor: Tensor, tensor_size: int) -> Any:
"""Deserialize tensor to picklable python object."""
buf = tensor.cpu().numpy().tobytes()[:tensor_size]
return pickle.loads(buf)
def _broadcast_object_list(object_list: List[Any],
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Broadcast picklable objects in ``object_list`` to the whole group.
Similar to :func:`broadcast`, but Python objects can be passed in. Note
that all objects in ``object_list`` must be picklable in order to be
broadcasted.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
my_rank = get_rank()
# Serialize object_list elements to tensors on src rank.
if my_rank == src:
tensor_list, size_list = zip(
*[_object_to_tensor(obj) for obj in object_list])
object_sizes_tensor = torch.cat(size_list)
else:
object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long)
# Current device selection.
# To preserve backwards compatibility, ``device`` is ``None`` by default.
# in which case we run current logic of device selection, i.e.
# ``current_device`` is CUDA if backend is NCCL otherwise CPU device. In
# the case it is not ``None`` we move the size and object tensors to be
# broadcasted to this device.
group_backend = get_backend(group)
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
current_device = torch.device('cpu')
if is_nccl_backend:
# See note about using torch.cuda.current_device() here in
# docstring. We cannot simply use my_rank since rank == device is
# not necessarily true.
current_device = torch.device('cuda', torch.cuda.current_device())
object_sizes_tensor = object_sizes_tensor.to(current_device)
# Broadcast object sizes
torch_dist.broadcast(object_sizes_tensor, src=src, group=group)
# Concatenate and broadcast serialized object tensors
if my_rank == src:
object_tensor = torch.cat(tensor_list)
else:
object_tensor = torch.empty(
torch.sum(object_sizes_tensor).int().item(),
dtype=torch.uint8,
)
if is_nccl_backend:
object_tensor = object_tensor.to(current_device)
torch_dist.broadcast(object_tensor, src=src, group=group)
# Deserialize objects using their stored sizes.
offset = 0
if my_rank != src:
for i, obj_size in enumerate(object_sizes_tensor):
obj_view = object_tensor[offset:offset + obj_size]
obj_view = obj_view.type(torch.uint8)
if obj_view.device != torch.device('cpu'):
obj_view = obj_view.cpu()
offset += obj_size
object_list[i] = _tensor_to_object(obj_view, obj_size)
def broadcast_object_list(data: List[Any],
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
"""Broadcasts picklable objects in ``object_list`` to the whole group.
Similar to :func:`broadcast`, but Python objects can be passed in. Note
that all objects in ``object_list`` must be picklable in order to be
broadcasted.
Note:
Calling ``broadcast_object_list`` in non-distributed environment does
nothing.
Args:
data (List[Any]): List of input objects to broadcast.
Each object must be picklable. Only objects on the ``src`` rank
will be broadcast, but each rank must provide lists of equal sizes.
src (int): Source rank from which to broadcast ``object_list``.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.
device (``torch.device``, optional): If not None, the objects are
serialized and converted to tensors which are moved to the
``device`` before broadcasting. Default is ``None``.
Note:
For NCCL-based process groups, internal tensor representations of
objects must be moved to the GPU device before communication starts.
In this case, the used device is given by
``torch.cuda.current_device()`` and it is the user's responsibility to
ensure that this is correctly set so that each rank has an individual
GPU, via ``torch.cuda.set_device()``.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}]
>>> dist.broadcast_object_list(data)
>>> data
['foo', 12, {1: 2}]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> if dist.get_rank() == 0:
>>> # Assumes world_size of 3.
>>> data = ["foo", 12, {1: 2}] # any picklable object
>>> else:
>>> data = [None, None, None]
>>> dist.broadcast_object_list(data)
>>> data
["foo", 12, {1: 2}] # Rank 0
["foo", 12, {1: 2}] # Rank 1
"""
assert isinstance(data, list)
if get_world_size(group) > 1:
if group is None:
group = get_default_group()
if digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
torch_dist.broadcast_object_list(data, src, group)
else:
_broadcast_object_list(data, src, group)
def all_reduce_dict(data: Dict[str, Tensor],
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
"""Reduces the dict across all machines in such a way that all get the
final result.
The code is modified from https://github.com/Megvii-
BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.
Args:
data (dict[str, Tensor]): Data to be reduced.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = {
'key1': torch.arange(2, dtype=torch.int64),
'key2': torch.arange(3, dtype=torch.int64)
}
>>> dist.all_reduce_dict(data)
>>> data
{'key1': tensor([0, 1]), 'key2': tensor([0, 1, 2])}
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = {
'key1': torch.arange(2, dtype=torch.int64),
'key2': torch.arange(3, dtype=torch.int64)
}
>>> dist.all_reduce_dict(data)
>>> data
{'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 0
{'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 1
"""
assert isinstance(data, dict)
world_size = get_world_size(group)
if world_size > 1:
if group is None:
group = get_default_group()
# ensure keys are consistent across processes
keys = sorted(data.keys())
tensor_shapes = [data[k].shape for k in keys]
tensor_sizes = [data[k].numel() for k in keys]
if digit_version(TORCH_VERSION) == digit_version('1.5.0'):
# `torch.cat` in torch1.5 can not concatenate different types so
# we fallback to convert them all to float type.
flatten_tensor = torch.cat(
[data[k].flatten().float() for k in keys])
else:
flatten_tensor = torch.cat([data[k].flatten() for k in keys])
all_reduce(flatten_tensor, op=op, group=group)
split_tensors = [
x.reshape(shape) for x, shape in zip(
torch.split(flatten_tensor, tensor_sizes), tensor_shapes)
]
for k, v in zip(keys, split_tensors):
data[k] = v
def _all_gather_object(object_list: List[Any],
obj: Any,
group: Optional[ProcessGroup] = None) -> None:
"""Gather picklable objects from the whole group into a list.
Similar to :func:`all_gather`, but Python objects can be passed in.
Note that the object must be picklable in order to be gathered.
Args:
object_list (list[Any]): Output list. It should be correctly sized as
the size of the group for this collective and will contain the
output.
object (Any): Pickable Python object to be broadcast from current
process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list``
will be unmodified.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
input_tensor, local_size = _object_to_tensor(obj)
group_backend = get_backend(group)
current_device = torch.device('cpu')
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
if is_nccl_backend:
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device('cuda', torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and
# index until the correct size when deserializing the tensors.
group_size = get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
torch_dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item())
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i:max_object_size * (i + 1)]
for i in range(group_size)
]
torch_dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device('cpu'):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)
def all_gather_object(data: Any,
group: Optional[ProcessGroup] = None) -> List[Any]:
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
"""Gather picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the
object must be picklable in order to be gathered.
Note:
Calling ``all_gather_object`` in non-distributed environment does
nothing and just returns a list containing :attr:`data` itself.
Note:
Unlike PyTorch ``torch.distributed.all_gather_object``,
:meth:`all_gather_object` in MMEngine does not pass in an empty list
``gather_list`` and returns the ``gather_list`` directly, which is
more convenient. The difference between their interfaces is as below:
- MMEngine: all_gather_object(data, group) -> gather_list
- PyTorch: all_gather_object(gather_list, data, group) -> None
Args:
data (Any): Pickable Python object to be broadcast from current
process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: Return a list containing data from the whole group if
in distributed environment, otherwise a list only containing
:attr:`data` itself.
Note:
For NCCL-based process groups, internal tensor representations
of objects must be moved to the GPU device before communication starts.
In this case, the used device is given by
``torch.cuda.current_device()`` and it is the user's responsibility to
ensure that this is correctly set so that each rank has an individual
GPU, via ``torch.cuda.set_device()``.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}] # any picklable object
>>> gather_objects = dist.all_gather_object(data[dist.get_rank()])
>>> output
['foo']
>>> # distributed environment
>>> # We have 3 process groups, 3 ranks.
>>> output = dist.all_gather_object(data[dist.get_rank()])
>>> output
['foo', 12, {1: 2}] # Rank 0
['foo', 12, {1: 2}] # Rank 1
['foo', 12, {1: 2}] # Rank 2
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
gather_list = [None] * world_size
if digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
torch_dist.all_gather_object(gather_list, data, group)
else:
_all_gather_object(gather_list, data, group)
return gather_list
def _validate_output_list_for_rank(my_rank: int, dst: int,
gather_list: Optional[list]) -> None:
"""Validate whether ``gather_list`` is None in non-dst ranks."""
if dst == my_rank:
if not gather_list:
raise ValueError(
'Argument ``gather_list`` must be specified on destination '
'rank.')
elif gather_list:
raise ValueError('Argument ``gather_list`` must NOT be specified '
'on non-destination ranks.')
def _gather_object(obj: Any,
object_gather_list=None,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that
the object must be picklable in order to be gathered.
Args:
obj (Any): Input object. Must be picklable.
object_gather_list (list[Any], optional): Output list. On the ``dst``
rank, it should be correctly sized as the size of the group for
this collective and will contain the output. Must be ``None`` on
non-dst ranks. Defaults to None.
dst (int): Destination rank. Defaults to 0.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
# Ensure object_gather_list is specified appopriately.
my_rank = get_rank()
_validate_output_list_for_rank(my_rank, dst, object_gather_list)
input_tensor, local_size = _object_to_tensor(obj)
group_backend = get_backend(group)
current_device = torch.device('cpu')
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
if is_nccl_backend:
current_device = torch.device('cuda', torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and
# index until the correct size when deserializing the tensors.
group_size = get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes. An all-gather is needed here despite this being a
# gather, since each rank needs to broadcast a tensor of the same (maximal)
# size.
torch_dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item())
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
# Avoid populating output tensors if the result won't be gathered on this
# rank.
if my_rank == dst:
coalesced_output_tensor = torch.empty(
max_object_size * group_size,
dtype=torch.uint8,
device=current_device)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i:max_object_size *
(i + 1)] for i in range(group_size)
]
# All ranks call gather with equal-sized tensors.
torch_dist.gather(
input_tensor,
gather_list=output_tensors if my_rank == dst else None,
dst=dst,
group=group,
)
if my_rank != dst:
return
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
tensor_size = object_size_list[i]
object_gather_list[i] = _tensor_to_object(tensor, tensor_size)
def gather_object(data: Any,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> Optional[List[Any]]:
"""Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that
the object must be picklable in order to be gathered.
Note:
``NCCL backend`` does not support ``gather_object``.
Note:
Unlike PyTorch ``torch.distributed.gather_object``,
:meth:`gather_object` in MMEngine does not pass in an empty list
``gather_list`` and returns the ``gather_list`` directly, which is
more convenient. The difference between their interfaces is as below:
- MMEngine: gather_object(data, dst, group) -> gather_list
- PyTorch: gather_object(data, gather_list, data, group) -> None
Args:
data (Any): Input object. Must be picklable.
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
dst (int): Destination rank. Defaults to 0.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Any]. On the ``dst`` rank, return ``gather_list`` which contains
the output of the collective.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}] # any picklable object
>>> gather_objects = dist.gather_object(data[dist.get_rank()])
>>> output
['foo']
>>> # distributed environment
>>> # We have 3 process groups, 3 ranks.
>>> dist.gather_object(gather_objects[dist.get_rank()], dst=0)
>>> output
['foo', 12, {1: 2}] # Rank 0
None # Rank 1
None # Rank 2
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
gather_list = [None] * world_size if get_rank(group) == dst else None
if digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
torch_dist.gather_object(data, gather_list, dst, group)
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
else:
_gather_object(data, gather_list, dst, group)
return gather_list
def collect_results(results: list,
size: int,
device: str = 'cpu',
tmpdir: Optional[str] = None) -> Optional[list]:
"""Collected results in distributed environments.
Args:
results (list[object]): Result list containing result parts to be
collected. Each item of ``result_part`` should be a picklable
object.
size (int): Size of the results, commonly equal to length of
the results.
device (str): Device name. Optional values are 'cpu' and 'gpu'.
tmpdir (str | None): Temporal directory for collected results to
store. If set to None, it will create a temporal directory for it.
``tmpdir`` should be None when device is 'gpu'. Defaults to None.
Returns:
list or None: The collected results.
Examples:
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> import mmengine.dist as dist
>>> if dist.get_rank() == 0:
data = ['foo', {1: 2}]
else:
data = [24, {'a': 'b'}]
>>> size = 4
>>> output = dist.collect_results(data, size, device='cpu')
>>> output
['foo', 24, {1: 2}, {'a': 'b'}] # rank 0
None # rank 1
"""
if device not in ['gpu', 'cpu']:
raise NotImplementedError(
f"device must be 'cpu' or 'gpu', but got {device}")
if device == 'gpu':
assert tmpdir is None, 'tmpdir should be None when device is "gpu"'
return collect_results_gpu(results, size)
else:
return collect_results_cpu(results, size, tmpdir)
def collect_results_cpu(result_part: list,
size: int,
tmpdir: Optional[str] = None) -> Optional[list]:
"""Collect results under cpu mode.
On cpu mode, this function will save the results on different gpus to
``tmpdir`` and collect them by the rank 0 worker.
Args:
result_part (list): Result list containing result parts
to be collected. Each item of ``result_part`` should be a picklable
object.
size (int): Size of the results, commonly equal to length of
the results.
tmpdir (str | None): Temporal directory for collected results to
store. If set to None, it will create a random temporal directory
for it. Defaults to None.
Returns:
list or None: The collected results.
Examples:
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> import mmengine.dist as dist
>>> if dist.get_rank() == 0:
data = ['foo', {1: 2}]
else:
data = [24, {'a': 'b'}]
>>> size = 4
>>> output = dist.collect_results_cpu(data, size)
>>> output
['foo', 24, {1: 2}, {'a': 'b'}] # rank 0
None # rank 1
"""
rank, world_size = get_dist_info()
if world_size == 1:
return result_part[:size]
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8)
if rank == 0:
mmengine.mkdir_or_exist('.dist_test')
tmpdir = tempfile.mkdtemp(dir='.dist_test')
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8)
broadcast(dir_tensor, 0)
tmpdir = dir_tensor.numpy().tobytes().decode().rstrip()
else:
mmengine.mkdir_or_exist(tmpdir)
# dump the part result to the dir
with open(osp.join(tmpdir, f'part_{rank}.pkl'), 'wb') as f: # type: ignore
pickle.dump(result_part, f, protocol=2)
barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
path = osp.join(tmpdir, f'part_{i}.pkl') # type: ignore
with open(path, 'rb') as f:
part_list.append(pickle.load(f))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir