Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import os.path as osp
from unittest.mock import MagicMock
import pytest
import torch
from mmengine.data import (BaseDataset, ClassBalancedDataset, ConcatDataset,
RepeatDataset)
class TestBaseDataset:
def __init__(self):
self.base_dataset = BaseDataset
self.data_info = dict(filename='test_img.jpg', height=604, width=640)
self.base_dataset.parse_annotations = MagicMock(
return_value=self.data_info)
self.imgs = torch.rand((2, 3, 32, 32))
self.base_dataset.pipeline = MagicMock(
return_value=dict(imgs=self.imgs))
def test_init(self):
# test the instantiation of self.base_dataset
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert hasattr(dataset, 'data_address')
# test the instantiation of self.base_dataset with
# `serialize_data=False`
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
serialize_data=False)
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert not hasattr(dataset, 'data_address')
# test the instantiation of self.base_dataset with lazy init
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
lazy_init=True)
assert not dataset._fully_initialized
assert not hasattr(dataset, 'data_infos')
# test the instantiation of self.base_dataset when the ann_file is
# wrong
with pytest.raises(ValueError):
self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/wrong_annotation.json')
# test the instantiation of self.base_dataset when `parse_annotations`
# return `list[dict]`
self.base_dataset.parse_annotations = MagicMock(
return_value=[self.data_info,
self.data_info.copy()])
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert hasattr(dataset, 'data_address')
assert len(dataset) == 4
assert dataset[0] == dict(imgs=self.imgs)
assert dataset.get_data_info(0) == self.data_info
# set self.base_dataset to initial state
self.__init__()
def test_meta(self):
# test dataset.meta with setting the meta from annotation file as the
# meta of self.base_dataset
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
assert dataset.meta == dict(
dataset_type='test_dataset', task_name='test_task')
# test dataset.meta with setting META in self.base_dataset
dataset_type = 'new_dataset'
self.base_dataset.META = dict(
dataset_type=dataset_type, classes=('dog', 'cat'))
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
assert dataset.meta == dict(
dataset_type=dataset_type,
task_name='test_task',
classes=('dog', 'cat'))
# test dataset.meta with passing meta into self.base_dataset
meta = dict(classes=('dog', ))
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
meta=meta)
assert self.base_dataset.META == dict(
dataset_type=dataset_type, classes=('dog', 'cat'))
assert dataset.meta == dict(
dataset_type=dataset_type,
task_name='test_task',
classes=('dog', ))
# reset `base_dataset.META`, the `dataset.meta` should not change
self.base_dataset.META['classes'] = ('dog', 'cat', 'fish')
assert self.base_dataset.META == dict(
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
assert dataset.meta == dict(
dataset_type=dataset_type,
task_name='test_task',
classes=('dog', ))
# test dataset.meta with passing meta into self.base_dataset and
# lazy_init is True
meta = dict(classes=('dog', ))
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
meta=meta,
lazy_init=True)
# 'task_name' not in dataset.meta
assert dataset.meta == dict(
dataset_type=dataset_type, classes=('dog', ))
# test whether self.base_dataset.META is changed when a customize
# dataset inherit self.base_dataset
# test reset META in ToyDataset.
class ToyDataset(self.base_dataset):
META = dict(xxx='xxx')
assert ToyDataset.META == dict(xxx='xxx')
assert self.base_dataset.META == dict(
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
# test update META in ToyDataset.
class ToyDataset(self.base_dataset):
self.base_dataset.META['classes'] = ('bird', )
assert ToyDataset.META == dict(
dataset_type=dataset_type, classes=('bird', ))
assert self.base_dataset.META == dict(
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
# set self.base_dataset to initial state
self.__init__()
@pytest.mark.parametrize('lazy_init', [True, False])
def test_length(self, lazy_init):
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
lazy_init=lazy_init)
if not lazy_init:
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert len(dataset) == 2
else:
# test `__len__()` when lazy_init is True
assert not dataset._fully_initialized
assert not hasattr(dataset, 'data_infos')
# call `full_init()` automatically
assert len(dataset) == 2
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
@pytest.mark.parametrize('lazy_init', [True, False])
def test_getitem(self, lazy_init):
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
lazy_init=lazy_init)
if not lazy_init:
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert dataset[0] == dict(imgs=self.imgs)
else:
# test `__getitem__()` when lazy_init is True
assert not dataset._fully_initialized
assert not hasattr(dataset, 'data_infos')
# call `full_init()` automatically
assert dataset[0] == dict(imgs=self.imgs)
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
@pytest.mark.parametrize('lazy_init', [True, False])
def test_get_data_info(self, lazy_init):
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
lazy_init=lazy_init)
if not lazy_init:
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert dataset.get_data_info(0) == self.data_info
else:
# test `get_data_info()` when lazy_init is True
assert not dataset._fully_initialized
assert not hasattr(dataset, 'data_infos')
# call `full_init()` automatically
assert dataset.get_data_info(0) == self.data_info
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
@pytest.mark.parametrize('lazy_init', [True, False])
def test_full_init(self, lazy_init):
dataset = self.base_dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
lazy_init=lazy_init)
if not lazy_init:
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert len(dataset) == 2
assert dataset[0] == dict(imgs=self.imgs)
assert dataset.get_data_info(0) == self.data_info
else:
# test `full_init()` when lazy_init is True
assert not dataset._fully_initialized
assert not hasattr(dataset, 'data_infos')
# call `full_init()` manually
dataset.full_init()
assert dataset._fully_initialized
assert hasattr(dataset, 'data_infos')
assert len(dataset) == 2
assert dataset[0] == dict(imgs=self.imgs)
assert dataset.get_data_info(0) == self.data_info
class TestConcatDataset:
def __init__(self):
dataset = BaseDataset
# create dataset_a
data_info = dict(filename='test_img.jpg', height=604, width=640)
dataset.parse_annotations = MagicMock(return_value=data_info)
imgs = torch.rand((2, 3, 32, 32))
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
self.dataset_a = dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
# create dataset_b
data_info = dict(filename='gray.jpg', height=288, width=512)
dataset.parse_annotations = MagicMock(return_value=data_info)
imgs = torch.rand((2, 3, 32, 32))
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
self.dataset_b = dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json',
meta=dict(classes=('dog', 'cat')))
# test init
self.cat_datasets = ConcatDataset(
datasets=[self.dataset_a, self.dataset_b])
def test_meta(self):
assert self.cat_datasets.meta == self.dataset_a.meta
# meta of self.cat_datasets is from the first dataset when
# concatnating datasets with different metas.
assert self.cat_datasets.meta != self.dataset_b.meta
def test_length(self):
assert len(self.cat_datasets) == (
len(self.dataset_a) + len(self.dataset_b))
def test_getitem(self):
assert self.cat_datasets[0] == self.dataset_a[0]
assert self.cat_datasets[0] != self.dataset_b[0]
assert self.cat_datasets[-1] == self.dataset_b[-1]
assert self.cat_datasets[-1] != self.dataset_a[-1]
def test_get_data_info(self):
assert self.cat_datasets.get_data_info(
0) == self.dataset_a.get_data_info(0)
assert self.cat_datasets.get_data_info(
0) != self.dataset_b.get_data_info(0)
assert self.cat_datasets.get_data_info(
-1) == self.dataset_b.get_data_info(-1)
assert self.cat_datasets.get_data_info(
-1) != self.dataset_a[-1].get_data_info(-1)
class TestRepeatDataset:
def __init__(self):
dataset = BaseDataset
data_info = dict(filename='test_img.jpg', height=604, width=640)
dataset.parse_annotations = MagicMock(return_value=data_info)
imgs = torch.rand((2, 3, 32, 32))
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
self.dataset = dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
self.repeat_times = 5
# test init
self.repeat_datasets = RepeatDataset(
dataset=self.dataset, times=self.repeat_times)
def test_meta(self):
assert self.repeat_datasets.meta == self.dataset.meta
def test_length(self):
assert len(
self.repeat_datasets) == len(self.dataset) * self.repeat_times
def test_getitem(self):
for i in range(self.repeat_times):
assert self.repeat_datasets[len(self.dataset) *
i] == self.dataset[0]
def test_get_data_info(self):
for i in range(self.repeat_times):
assert self.repeat_datasets.get_data_info(
len(self.dataset) * i) == self.dataset.get_data_info(0)
class TestClassBalancedDataset:
def __init__(self):
dataset = BaseDataset
data_info = dict(filename='test_img.jpg', height=604, width=640)
dataset.parse_annotations = MagicMock(return_value=data_info)
imgs = torch.rand((2, 3, 32, 32))
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
dataset.get_cat_ids = MagicMock(return_value=[0])
self.dataset = dataset(
data_root=osp.join(osp.dirname(__file__), '../data/'),
data_prefix=dict(img='imgs'),
ann_file='annotations/dummy_annotation.json')
self.repeat_indices = [0, 0, 1, 1, 1]
# test init
self.cls_banlanced_datasets = ClassBalancedDataset(
dataset=self.dataset, oversample_thr=1e-3)
self.cls_banlanced_datasets.repeat_indices = self.repeat_indices
def test_meta(self):
assert self.cls_banlanced_datasets.meta == self.dataset.meta
def test_length(self):
assert len(self.cls_banlanced_datasets) == len(self.repeat_indices)
def test_getitem(self):
for i in range(len(self.repeat_indices)):
assert self.cls_banlanced_datasets[i] == self.dataset[
self.repeat_indices[i]]
def test_get_data_info(self):
for i in range(len(self.repeat_indices)):
assert self.cls_banlanced_datasets.get_data_info(
i) == self.dataset.get_data_info(self.repeat_indices[i])
def test_get_cat_ids(self):
for i in range(len(self.repeat_indices)):
assert self.cls_banlanced_datasets.get_cat_ids(
i) == self.dataset.get_cat_ids(self.repeat_indices[i])