Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import time
from abc import ABCMeta, abstractmethod
from typing import Any, Optional, Sequence, Union
import cv2
import numpy as np
import torch
from mmengine.config import Config
from mmengine.fileio import dump
from mmengine.registry import VISBACKENDS
from mmengine.utils import TORCH_VERSION
class BaseVisBackend(metaclass=ABCMeta):
"""Base class for vis backend.
All backends must inherit ``BaseVisBackend`` and implement
the required functions.
Args:
save_dir (str, optional): The root directory to save
the files produced by the backend. Default to None.
"""
def __init__(self, save_dir: Optional[str] = None):
self._save_dir = save_dir
if self._save_dir:
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
self._save_dir = osp.join(self._save_dir,
f'vis_data_{timestamp}') # type: ignore
@property
@abstractmethod
def experiment(self) -> Any:
"""Return the experiment object associated with this writer.
The experiment attribute can get the visualizer backend, such as wandb,
tensorboard. If you want to write other data, such as writing a table,
you can directly get the visualizer backend through experiment.
"""
pass
def add_config(self, config: Config, **kwargs) -> None:
"""Record a set of parameters.
Args:
config (Config): The Config object
"""
pass
def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
**kwargs) -> None:
"""Record graph.
Args:
model (torch.nn.Module): Model to draw.
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
pass
def add_image(self,
name: str,
image: np.ndarray,
step: int = 0,
**kwargs) -> None:
"""Record image.
Args:
name (str): The unique identifier for the image to save.
image (np.ndarray, optional): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
pass
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
"""Record scalar.
Args:
name (str): The unique identifier for the scalar to save.
value (float, int): Value to save.
step (int): Global step value to record. Default to 0.
"""
pass
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record scalars' data.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): The scalar's data will be
saved to the `file_path` file at the same time
if the `file_path` parameter is specified.
Default to None.
"""
pass
def close(self) -> None:
"""close an opened object."""
pass
@VISBACKENDS.register_module()
class LocalVisBackend(BaseVisBackend):
"""Local vis backend class.
It can write image, config, scalars, etc.
to the local hard disk. You can get the drawing backend
through the visualizer property for custom drawing.
Examples:
>>> from mmengine.visualization import LocalVisBackend
>>> import numpy as np
>>> local_vis_backend = LocalVisBackend(save_dir='temp_dir')
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> local_vis_backend.add_image('img', img)
>>> local_vis_backend.add_scaler('mAP', 0.6)
>>> local_vis_backend.add_scalars({'loss': [1, 2, 3], 'acc': 0.8})
>>> local_vis_backend.add_image('img', image)
Args:
save_dir (str, optional): The root directory to save the files
produced by the writer. If it is none, it means no data
is stored. Default None.
img_save_dir (str): The directory to save images.
Default to 'writer_image'.
config_save_file (str): The file to save parameters.
Default to 'parameters.yaml'.
scalar_save_file (str): The file to save scalar values.
Default to 'scalars.json'.
"""
def __init__(self,
save_dir: Optional[str] = None,
img_save_dir: str = 'vis_image',
config_save_file: str = 'config.py',
scalar_save_file: str = 'scalars.json'):
assert config_save_file.split('.')[-1] == 'py'
assert scalar_save_file.split('.')[-1] == 'json'
super(LocalVisBackend, self).__init__(save_dir)
if self._save_dir is not None:
os.makedirs(self._save_dir, exist_ok=True) # type: ignore
self._img_save_dir = osp.join(
self._save_dir, # type: ignore
img_save_dir)
self._scalar_save_file = osp.join(
self._save_dir, # type: ignore
scalar_save_file)
self._config_save_file = osp.join(
self._save_dir, # type: ignore
config_save_file)
@property
def experiment(self) -> 'LocalVisBackend':
"""Return the experiment object associated with this visualizer
backend."""
return self
def add_config(self, config: Config, **kwargs) -> None:
# TODO
assert isinstance(config, Config)
def add_image(self,
name: str,
image: np.ndarray = None,
step: int = 0,
**kwargs) -> None:
"""Record image to disk.
Args:
name (str): The unique identifier for the image to save.
image (np.ndarray, optional): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
drawn_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
os.makedirs(self._img_save_dir, exist_ok=True)
save_file_name = f'{name}_{step}.png'
cv2.imwrite(osp.join(self._img_save_dir, save_file_name), drawn_image)
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
"""Add scalar data to disk.
Args:
name (str): The unique identifier for the scalar to save.
value (float, int): Value to save.
step (int): Global step value to record. Default to 0.
"""
self._dump({name: value, 'step': step}, self._scalar_save_file, 'json')
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record scalars. The scalar dict will be written to the default and
specified files if ``file_name`` is specified.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): The scalar's data will be
saved to the ``file_path`` file at the same time
if the ``file_path`` parameter is specified.
Default to None.
"""
assert isinstance(scalar_dict, dict)
scalar_dict.setdefault('step', step)
if file_path is not None:
assert file_path.split('.')[-1] == 'json'
new_save_file_path = osp.join(
self._save_dir, # type: ignore
file_path)
assert new_save_file_path != self._scalar_save_file, \
'"file_path" and "scalar_save_file" have the same name, ' \
'please set "file_path" to another value'
self._dump(scalar_dict, new_save_file_path, 'json')
self._dump(scalar_dict, self._scalar_save_file, 'json')
def _dump(self, value_dict: dict, file_path: str,
file_format: str) -> None:
"""dump dict to file.
Args:
value_dict (dict) : Save dict data.
file_path (str): The file path to save data.
file_format (str): The file format to save data.
"""
with open(file_path, 'a+') as f:
dump(value_dict, f, file_format=file_format)
f.write('\n')
@VISBACKENDS.register_module()
class WandbVisBackend(BaseVisBackend):
"""Write various types of data to wandb.
Examples:
>>> from mmengine.visualization import WandbVisBackend
>>> import numpy as np
>>> wandb_vis_backend = WandbVisBackend()
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> wandb_vis_backend.add_image('img', img)
>>> wandb_vis_backend.add_scaler('mAP', 0.6)
>>> wandb_vis_backend.add_scalars({'loss': [1, 2, 3],'acc': 0.8})
>>> wandb_vis_backend.add_image('img', img)
Args:
init_kwargs (dict, optional): wandb initialization
input parameters. Default to None.
commit: (bool, optional) Save the metrics dict to the wandb server
and increment the step. If false `wandb.log` just
updates the current metrics dict with the row argument
and metrics won't be saved until `wandb.log` is called
with `commit=True`. Default to True.
save_dir (str, optional): The root directory to save the files
produced by the writer. Default to None.
"""
def __init__(self,
init_kwargs: Optional[dict] = None,
commit: Optional[bool] = True,
save_dir: Optional[str] = None):
super(WandbVisBackend, self).__init__(save_dir)
self._commit = commit
self._wandb = self._setup_env(init_kwargs)
@property
def experiment(self):
"""Return wandb object.
The experiment attribute can get the wandb backend, If you want to
write other data, such as writing a table, you can directly get the
wandb backend through experiment.
"""
return self._wandb
def _setup_env(self, init_kwargs: Optional[dict] = None) -> Any:
"""Setup env.
Args:
init_kwargs (dict): The init args.
Return:
:obj:`wandb`
"""
try:
import wandb
except ImportError:
raise ImportError(
'Please run "pip install wandb" to install wandb')
if init_kwargs:
wandb.init(**init_kwargs)
else:
wandb.init()
return wandb
def add_config(self, config: Config, **kwargs) -> None:
# TODO
pass
def add_image(self,
name: str,
image: np.ndarray = None,
step: int = 0,
**kwargs) -> None:
"""Record image to wandb.
Args:
name (str): The unique identifier for the image to save.
image (np.ndarray, optional): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
self._wandb.log({name: image}, commit=self._commit, step=step)
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
"""Record scalar data to wandb.
Args:
name (str): The unique identifier for the scalar to save.
value (float, int): Value to save.
step (int): Global step value to record. Default to 0.
"""
self._wandb.log({name: value}, commit=self._commit, step=step)
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record scalar's data to wandb.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): Useless parameter. Just for
interface unification. Default to None.
"""
self._wandb.log(scalar_dict, commit=self._commit, step=step)
def close(self) -> None:
"""close an opened wandb object."""
if hasattr(self, '_wandb'):
self._wandb.join()
@VISBACKENDS.register_module()
class TensorboardVisBackend(BaseVisBackend):
"""Tensorboard class. It can write images, config, scalars, etc. to a
tensorboard file.
Its drawing function is provided by Visualizer.
Examples:
>>> from mmengine.visualization import TensorboardVisBackend
>>> import numpy as np
>>> tensorboard_visualizer = TensorboardVisBackend(save_dir='temp_dir')
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> tensorboard_visualizer.add_image('img', img)
>>> tensorboard_visualizer.add_scaler('mAP', 0.6)
>>> tensorboard_visualizer.add_scalars({'loss': 0.1,'acc':0.8})
>>> tensorboard_visualizer.add_image('img', image)
Args:
save_dir (str): The root directory to save the files
produced by the backend.
log_dir (str): Save directory location. Default to 'tf_logs'.
"""
def __init__(self,
save_dir: Optional[str] = None,
log_dir: str = 'tf_logs'):
super(TensorboardVisBackend, self).__init__(save_dir)
if save_dir is not None:
self._tensorboard = self._setup_env(log_dir)
def _setup_env(self, log_dir: str):
"""Setup env.
Args:
log_dir (str): Save directory location.
Return:
:obj:`SummaryWriter`
"""
if TORCH_VERSION == 'parrots':
try:
from tensorboardX import SummaryWriter
except ImportError:
raise ImportError('Please install tensorboardX to use '
'TensorboardLoggerHook.')
else:
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
raise ImportError(
'Please run "pip install future tensorboard" to install '
'the dependencies to use torch.utils.tensorboard '
'(applicable to PyTorch 1.1 or higher)')
if self._save_dir is None:
return SummaryWriter(f'./{log_dir}')
else:
self.log_dir = osp.join(self._save_dir, log_dir) # type: ignore
return SummaryWriter(self.log_dir)
@property
def experiment(self):
"""Return Tensorboard object."""
return self._tensorboard
def add_config(self, config: Config, **kwargs) -> None:
# TODO
pass
def add_image(self,
name: str,
image: np.ndarray,
step: int = 0,
**kwargs) -> None:
"""Record image to tensorboard.
Args:
name (str): The unique identifier for the image to save.
image (np.ndarray, optional): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
self._tensorboard.add_image(name, image, step, dataformats='HWC')
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
"""Record scalar data to summary.
Args:
name (str): The unique identifier for the scalar to save.
value (float, int): Value to save.
step (int): Global step value to record. Default to 0.
"""
self._tensorboard.add_scalar(name, value, step)
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record scalar's data to summary.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): Useless parameter. Just for
interface unification. Default to None.
"""
assert isinstance(scalar_dict, dict)
assert 'step' not in scalar_dict, 'Please set it directly ' \
'through the step parameter'
for key, value in scalar_dict.items():
self.add_scalar(key, value, step)
def close(self):
"""close an opened tensorboard object."""
if hasattr(self, '_tensorboard'):
self._tensorboard.close()