Skip to content
Snippets Groups Projects
naive_visualization_hook.py 3.24 KiB
Newer Older
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Optional, Sequence, Tuple

import cv2
import numpy as np

from mmengine.data import BaseDataElement
from mmengine.hooks import Hook
from mmengine.registry import HOOKS
from mmengine.utils.misc import tensor2imgs


# TODO: Due to interface changes, the current class
#  functions incorrectly
@HOOKS.register_module()
class NaiveVisualizationHook(Hook):
    """Show or Write the predicted results during the process of testing.

    Args:
        interval (int): Visualization interval. Defaults to 1.
        draw_gt (bool): Whether to draw the ground truth. Default to True.
        draw_pred (bool): Whether to draw the predicted result.
            Default to True.
    """
    priority = 'NORMAL'

    def __init__(self,
                 interval: int = 1,
                 draw_gt: bool = True,
                 draw_pred: bool = True):
        self.draw_gt = draw_gt
        self.draw_pred = draw_pred
        self._interval = interval

    def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int,
                                                           int]) -> np.ndarray:
liukuikun's avatar
liukuikun committed
        """Unpad the input image.

        Args:
            input (np.ndarray): The image to unpad.
            unpad_shape (tuple): The shape of image before padding.

        Returns:
            np.ndarray: The image before padding.
        """
        unpad_width, unpad_height = unpad_shape
        unpad_image = input[:unpad_height, :unpad_width]
        return unpad_image

    def after_test_iter(
            self,
            runner,
            batch_idx: int,
            data_batch: Optional[Sequence[dict]] = None,
            outputs: Optional[Sequence[BaseDataElement]] = None) -> None:
        """Show or Write the predicted results.

        Args:
            runner (Runner): The runner of the training process.
            batch_idx (int): The index of the current batch in the test loop.
            data_batch (Sequence[dict], optional): Data
                from dataloader. Defaults to None.
            outputs (Sequence[BaseDataElement], optional): Outputs from model.
                Defaults to None.
        """
        if self.every_n_inner_iters(batch_idx, self._interval):
            for data, output in zip(data_batch, outputs):  # type: ignore
                input = data['inputs']
                data_sample = data['data_sample']
                input = tensor2imgs(input,
                                    **data_sample.get('img_norm_cfg',
                                                      dict()))[0]
                # TODO We will implement a function to revert the augmentation
                # in the future.
                ori_shape = (data_sample.ori_width, data_sample.ori_height)
                if 'pad_shape' in data_sample:
                    input = self._unpad(input,
                                        data_sample.get('scale', ori_shape))
                origin_image = cv2.resize(input, ori_shape)
                name = osp.basename(data_sample.img_path)
                runner.visualizer.add_datasample(name, origin_image,
                                                 data_sample, output,
                                                 self.draw_gt, self.draw_pred)