Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import random
from unittest import TestCase
import numpy as np
import pytest
import torch
from mmengine.data import BaseDataElement, InstanceData
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class TmpObject:
def __init__(self, tmp) -> None:
assert isinstance(tmp, list)
if len(tmp) > 0:
for t in tmp:
assert isinstance(t, list)
self.tmp = tmp
def __len__(self):
return len(self.tmp)
def __getitem__(self, item):
if type(item) == int:
if item >= len(self) or item < -len(self): # type:ignore
raise IndexError(f'Index {item} out of range!')
else:
# keep the dimension
item = slice(item, None, len(self))
return TmpObject(self.tmp[item])
@staticmethod
def cat(tmp_objs):
assert all(isinstance(results, TmpObject) for results in tmp_objs)
if len(tmp_objs) == 1:
return tmp_objs[0]
tmp_list = [tmp_obj.tmp for tmp_obj in tmp_objs]
tmp_list = list(itertools.chain(*tmp_list))
new_data = TmpObject(tmp_list)
return new_data
def __repr__(self):
return str(self.tmp)
class TmpObjectWithoutCat:
def __init__(self, tmp) -> None:
assert isinstance(tmp, list)
if len(tmp) > 0:
for t in tmp:
assert isinstance(t, list)
self.tmp = tmp
def __len__(self):
return len(self.tmp)
def __getitem__(self, item):
if type(item) == int:
if item >= len(self) or item < -len(self): # type:ignore
raise IndexError(f'Index {item} out of range!')
else:
# keep the dimension
item = slice(item, None, len(self))
return TmpObject(self.tmp[item])
def __repr__(self):
return str(self.tmp)
class TestInstanceData(TestCase):
def setup_data(self):
metainfo = dict(
img_id=random.randint(0, 100),
img_shape=(random.randint(400, 600), random.randint(400, 600)))
instances_infos = [1] * 5
bboxes = torch.rand((5, 4))
labels = np.random.rand(5)
kps = [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]
ids = (1, 2, 3, 4, 5)
name_ids = '12345'
polygons = TmpObject(np.arange(25).reshape((5, -1)).tolist())
instance_data = InstanceData(
metainfo=metainfo,
bboxes=bboxes,
labels=labels,
polygons=polygons,
kps=kps,
ids=ids,
name_ids=name_ids,
instances_infos=instances_infos)
return instance_data
def test_set_data(self):
instance_data = self.setup_data()
# test set '_metainfo_fields' or '_data_fields'
with self.assertRaises(AttributeError):
instance_data._metainfo_fields = 1
with self.assertRaises(AttributeError):
instance_data._data_fields = 1
# The data length in InstanceData must be the same
with self.assertRaises(AssertionError):
instance_data.keypoints = torch.rand((17, 2))
instance_data.keypoints = torch.rand((5, 2))
assert 'keypoints' in instance_data
def test_getitem(self):
instance_data = InstanceData()
# length must be greater than 0
with self.assertRaises(IndexError):
instance_data[1]
instance_data = self.setup_data()
assert len(instance_data) == 5
slice_instance_data = instance_data[:2]
assert len(slice_instance_data) == 2
slice_instance_data = instance_data[1]
assert len(slice_instance_data) == 1
# assert the index should in 0 ~ len(instance_data) -1
with pytest.raises(IndexError):
instance_data[5]
# isinstance(str, slice, int, torch.LongTensor, torch.BoolTensor)
item = torch.Tensor([1, 2, 3, 4]) # float
with pytest.raises(AssertionError):
instance_data[item]
# when input is a bool tensor, The shape of
# the input at index 0 should equal to
# the value length in instance_data_field
with pytest.raises(AssertionError):
instance_data[item.bool()]
# test Longtensor
long_tensor = torch.randint(5, (2, ))
long_index_instance_data = instance_data[long_tensor]
assert len(long_index_instance_data) == len(long_tensor)
# test bool tensor
bool_tensor = torch.rand(5) > 0.5
bool_index_instance_data = instance_data[bool_tensor]
assert len(bool_index_instance_data) == bool_tensor.sum()
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
bool_tensor = torch.rand(5) > 1
empty_instance_data = instance_data[bool_tensor]
assert len(empty_instance_data) == bool_tensor.sum()
# test list index
list_index = [1, 2]
list_index_instance_data = instance_data[list_index]
assert len(list_index_instance_data) == len(list_index)
# text list bool
list_bool = [True, False, True, False, False]
list_bool_instance_data = instance_data[list_bool]
assert len(list_bool_instance_data) == 2
# test numpy
long_numpy = np.random.randint(5, size=2)
long_numpy_instance_data = instance_data[long_numpy]
assert len(long_numpy_instance_data) == len(long_numpy)
bool_numpy = np.random.rand(5) > 0.5
bool_numpy_instance_data = instance_data[bool_numpy]
assert len(bool_numpy_instance_data) == bool_numpy.sum()
# without cat
instance_data.polygons = TmpObjectWithoutCat(
np.arange(25).reshape((5, -1)).tolist())
bool_numpy = np.random.rand(5) > 0.5
with pytest.raises(
ValueError,
match=('The type of `polygons` is '
f'`{type(instance_data.polygons)}`, '
'which has no attribute of `cat`, so it does not '
f'support slice with `bool`')):
bool_numpy_instance_data = instance_data[bool_numpy]
def test_cat(self):
instance_data_1 = self.setup_data()
instance_data_2 = self.setup_data()
cat_instance_data = InstanceData.cat(
[instance_data_1, instance_data_2])
assert len(cat_instance_data) == 10
# All inputs must be InstanceData
instance_data_2 = BaseDataElement(
bboxes=torch.rand((5, 4)), labels=torch.rand((5, )))
with self.assertRaises(AssertionError):
InstanceData.cat([instance_data_1, instance_data_2])
# Input List length must be greater than 0
with self.assertRaises(AssertionError):
InstanceData.cat([])
instance_data_2 = instance_data_1.clone()
instance_data_2 = instance_data_2[torch.zeros(5) > 0.5]
cat_instance_data = InstanceData.cat(
[instance_data_1, instance_data_2])
cat_instance_data = InstanceData.cat([instance_data_1])
assert len(cat_instance_data) == 5
# test custom data cat
instance_data_1.polygons = TmpObjectWithoutCat(
np.arange(25).reshape((5, -1)).tolist())
instance_data_2 = instance_data_1.clone()
with pytest.raises(
ValueError,
match=('The type of `polygons` is '
f'`{type(instance_data_1.polygons)}` '
'which has no attribute of `cat`')):
cat_instance_data = InstanceData.cat(
[instance_data_1, instance_data_2])
def test_len(self):
instance_data = self.setup_data()
assert len(instance_data) == 5
instance_data = InstanceData()
assert len(instance_data) == 0