Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
<div align="center">
<img src="https://user-images.githubusercontent.com/58739961/187154444-fce76639-ac8d-429b-9354-c6fac64b7ef8.jpg" width="600"/>
<div> </div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div> </div>
[](https://pypi.org/project/mmengine/)
[](https://pypi.org/project/mmengine)
[](https://github.com/open-mmlab/mmengine/blob/main/LICENSE)
[](https://github.com/open-mmlab/mmengine/issues)
[](https://github.com/open-mmlab/mmengine/issues)
[📘使用文档](https://mmengine.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html) |
[🤔报告问题](https://github.com/open-mmlab/mmengine/issues/new/choose)
</div>
<div align="center">
[English](README.md) | 简体中文
</div>
<div align="center">
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://discord.com/channels/1037617289144569886/1073056342287323168" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>
MMEngine 是一个基于 PyTorch 实现的,用于训练深度学习模型的基础库。它为开发人员提供了坚实的工程基础,以此避免在工作流上编写冗余代码。作为 OpenMMLab 所有代码库的训练引擎,其在不同研究领域支持了上百个算法。此外,MMEngine 也可以用于非 OpenMMLab 项目中。
- 支持用少量代码训练不同的任务,例如仅使用 80 行代码就可以训练 ImageNet(原始 PyTorch 示例需要 400 行)。
- 轻松兼容流行的算法库(如 TIMM、TorchVision 和 Detectron2)中的模型。
2. **接口统一的开放架构**:
- 使用统一的接口处理不同的算法任务,例如,实现一个方法并应用于所有的兼容性模型。
- 上下游的对接更加统一便捷,在为上层算法库提供统一抽象的同时,支持多种后端设备。目前 MMEngine 支持 Nvidia CUDA、Mac MPS、AMD、MLU 等设备进行模型训练。
- 定义了“乐高”式的训练流程。
- 提供了丰富的组件和策略。
- 使用不同等级的 API 控制训练过程。
亮点:
- 支持使用 MLflow 记录实验数据
- 支持往注册器里注册任何 callable 对象
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](./docs/en/notes/changelog.md#v073-04282023)
在安装 MMEngine 之前,请确保 PyTorch 已成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/)。
安装 MMEngine
```bash
pip install -U openmim
mim install mmengine
```
验证是否安装成功
```bash
python -c 'from mmengine.utils.dl_utils import collect_env;print(collect_env())'
```
更多安装方式请阅读[安装文档](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html)。
以在 CIFAR-10 数据集上训练一个 ResNet-50 模型为例,我们将使用 80 行以内的代码,利用 MMEngine 构建一个完整的、可配置的训练和验证流程。
<details>
<summary>构建模型</summary>
首先,我们需要构建一个**模型**,在 MMEngine 中,我们约定这个模型应当继承 `BaseModel`,并且其 `forward` 方法除了接受来自数据集的若干参数外,还需要接受额外的参数 `mode`。
- 对于训练,我们需要 `mode` 接受字符串 "loss",并返回一个包含 "loss" 字段的字典。
- 对于验证,我们需要 `mode` 接受字符串 "predict",并返回同时包含预测信息和真实信息的结果。
```python
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
```
</details>
<details>
<summary>构建数据集</summary>
其次,我们需要构建训练和验证所需要的**数据集(Dataset)**和**数据加载器(DataLoader)**。在该示例中,我们使用 TorchVision 支持的方式构建数据集。
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
```python
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
val_dataloader = DataLoader(batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
```
</details>
<details>
<summary>构建评测指标</summary>
为了进行验证和测试,我们需要定义模型推理结果的**评测指标**。我们约定这一评测指标需要继承 `BaseMetric`,并实现 `process` 和 `compute_metrics` 方法。
```python
from mmengine.evaluator import BaseMetric
class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
# 将一个批次的中间结果保存至 `self.results`
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})
def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
# 返回保存有评测指标结果的字典,其中键为指标名称
return dict(accuracy=100 * total_correct / total_size)
```
</details>
<details>
<summary>构建执行器</summary>
最后,我们利用构建好的`模型`,`数据加载器`,`评测指标`构建一个**执行器(Runner)**,并伴随其他的配置信息,如下所示。
```python
from torch.optim import SGD
from mmengine.runner import Runner
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
# 优化器包装,用于模型优化,并提供 AMP、梯度累积等附加功能
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
```
</details>
<details>
<summary>开始训练</summary>
```python
runner.train()
```
</details>
## 了解更多
<details>
- [执行器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/runner.html)
- [数据集与数据加载器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/dataset.html)
- [模型](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/model.html)
- [模型精度评测](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/evaluation.html)
- [优化器封装](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/optim_wrapper.html)
- [优化器参数调整策略](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/param_scheduler.html)
- [钩子](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/hook.html)
</details>
<details>
<summary>进阶教程</summary>
- [注册器](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/registry.html)
- [配置](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/config.html)
- [数据集基类](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/basedataset.html)
- [数据变换](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/data_transform.html)
- [权重初始化](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/initialize.html)
- [可视化](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/visualization.html)
- [抽象数据接口](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/data_element.html)
- [分布式通信原语](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/distributed.html)
- [记录日志](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/logging.html)
- [文件读写](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/fileio.html)
- [全局管理器 (ManagerMixin)](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/manager_mixin.html)
- [跨库调用模块](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/cross_library.html)
- [测试时增强](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/test_time_augmentation.html)
</details>
<details>
- [训练生成对抗网络](https://mmengine.readthedocs.io/zh_CN/latest/examples/train_a_gan.html)
<details>
<summary>常用功能</summary>
- [恢复训练](https://mmengine.readthedocs.io/zh_CN/latest/common_usage/resume_training.html)
- [加速训练](https://mmengine.readthedocs.io/zh_CN/latest/common_usage/speed_up_training.html)
- [节省显存](https://mmengine.readthedocs.io/zh_CN/latest/common_usage/save_gpu_memory.html)
</details>
<details>
<summary>架构设计</summary>
- [钩子](https://mmengine.readthedocs.io/zh_CN/latest/design/hook.html)
- [执行器](https://mmengine.readthedocs.io/zh_CN/latest/design/runner.html)
- [模型精度评测](https://mmengine.readthedocs.io/zh_CN/latest/design/evaluation.html)
- [可视化](https://mmengine.readthedocs.io/zh_CN/latest/design/visualization.html)
- [日志系统](https://mmengine.readthedocs.io/zh_CN/latest/design/logging.html)
- [推理接口](https://mmengine.readthedocs.io/zh_CN/latest/design/infer.html)
<details>
<summary>迁移指南</summary>
- [迁移 MMCV 执行器到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/runner.html)
- [迁移 MMCV 钩子到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/hook.html)
- [迁移 MMCV 模型到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/model.html)
- [迁移 MMCV 参数调度器到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/param_scheduler.html)
- [数据变换类的迁移](https://mmengine.readthedocs.io/zh_CN/latest/migration/transform.html)
</details>
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMEngine 所作出的努力。请参考[贡献指南](CONTRIBUTING_zh-CN.md)来了解参与项目贡献的相关指引。
## 引用
如果您觉得 MMEngine 对您的研究有所帮助,请考虑引用它:
```
@article{mmengine2022,
title = {{MMEngine}: OpenMMLab Foundational Library for Training Deep Learning Models},
author = {MMEngine Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmengine}},
year={2022}
}
```
## 开源许可证
该项目采用 [Apache 2.0 license](LICENSE) 开源许可证。
## OpenMMLab 的其他项目
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMLab 项目、算法、模型的统一入口
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [Playground](https://github.com/open-mmlab/playground): 收集和展示 OpenMMLab 相关的前沿、有趣的社区项目
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU),或通过添加微信“Open小喵Lab”加入官方交流微信群。
<div align="center">
<img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/58739961/187151778-d17c1368-125f-4fde-adbe-38cc6eb3be98.jpg" height="400" />
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬