Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import multiprocessing as mp
import os
import os.path as osp
import platform
import random
import shutil
import time
import warnings
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.data import pseudo_collate, worker_init_fn
from mmengine.dist import (broadcast, get_dist_info, init_dist, master_only,
sync_random_seed)
from mmengine.evaluator import Evaluator
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger
from mmengine.model import is_model_wrapper
from mmengine.optim import _ParamScheduler, build_optimizer
from mmengine.registry import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS,
MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
DefaultScope)
from mmengine.utils import (TORCH_VERSION, digit_version,
find_latest_checkpoint, is_list_of, symlink)
from mmengine.visualization import ComposedWriter
from .base_loop import BaseLoop
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
get_state_dict, save_checkpoint, weights_to_cpu)
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from .priority import Priority, get_priority
ConfigType = Union[Dict, Config, ConfigDict]
class Runner:
"""A training helper for PyTorch.
Runner object can be built from config by ``runner = Runner.from_cfg(cfg)``
where the ``cfg`` usually contains training, validation, and test-related
configurations to build corresponding components. We usually use the
same config to launch training, testing, and validation tasks. However,
only some of these components are necessary at the same time, e.g.,
testing a model does not need training or validation-related components.
To avoid repeatedly modifying config, the construction of ``Runner`` adopts
lazy initialization to only initialize components when they are going to be
used. Therefore, the model is always initialized at the beginning, and
training, validation, and, testing related components are only initialized
when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``,
respectively.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Args:
model (:obj:`torch.nn.Module` or dict): The model to be run. It can be
a dict used for build a model.
work_dir (str): The working directory to save checkpoints and logs.
train_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping training steps. Defaults to None.
See :meth:`build_dataloader` for more details.
val_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping validation steps. Defaults to None.
See :meth:`build_dataloader` for more details.
test_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping test steps. Defaults to None.
See :meth:`build_dataloader` for more details.
train_cfg (dict, optional): A dict to build a training loop. If it does
not provide "type" key, it should contain "by_epoch" to decide
which type of training loop :class:`EpochBasedTrainLoop` or
:class:`IterBasedTrainLoop` should be used. If ``train_cfg``
specified, :attr:`train_dataloader` should also be specified.
Defaults to None. See :meth:`build_train_loop` for more details.
val_cfg (dict, optional): A dict to build a validation loop. If it does
not provide "type" key, :class:`ValLoop` will be used by default.
If ``val_cfg`` specified, :attr:`val_dataloader` should also be
specified. Defaults to None.
See :meth:`build_val_loop` for more etails.
test_cfg (dict, optional): A dict to build a test loop. If it does
not provide "type" key, :class:`TestLoop` will be used by default.
If ``test_cfg`` specified, :attr:`test_dataloader` should also be
specified. Defaults to None.
See :meth:`build_test_loop` for more etails.
optimizer (Optimizer or dict, optional): Computing gradient of model
parameters. If specified, :attr:`train_dataloader` should also be
specified. Defaults to None.
param_scheduler (_ParamScheduler or dict or list, optional):
Parameter scheduler for updating optimizer parameters. If
specified, :attr:`optimizer` should also be specified.
Defaults to None.
val_evaluator (Evaluator or dict or list, optional): A evaluator object
used for computing metrics for validation. It can be a dict or a
list of dict to build a evaluator. If specified,
:attr:`val_dataloader` should also be specified. Defaults to None.
test_evaluator (Evaluator or dict or list, optional): A evaluator
object used for computing metrics for test steps. It can be a dict
or a list of dict to build a evaluator. If specified,
:attr:`test_dataloader` should also be specified. Defaults to None.
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to
execute default actions like updating model parameters and saving
checkpoints. Default hooks are ``OptimizerHook``,
``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and
``CheckpointHook``. Defaults to None.
See :meth:`register_default_hooks` for more details.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
load_from (str, optional): The checkpoint file to load from.
Defaults to None.
resume (bool): Whether to resume training. Defaults to False. If
``resume`` is True and ``load_from`` is None, automatically to
find latest checkpoint from ``work_dir``. If not found, resuming
does nothing.
launcher (str): Way to launcher multi-process. Supported launchers
are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is provided,
non-distributed environment will be launched.
env_cfg (dict): A dict used for setting environment. Defaults to
dict(dist_cfg=dict(backend='nccl')).
log_level (int or str): The log level of MMLogger handlers.
Defaults to 'INFO'.
writer (ComposedWriter or dict, optional): A ComposedWriter object or a
dict build ComposedWriter object. Defaults to None. If not
specified, default config will be used.
default_scope (str, optional): Used to reset registries location.
Defaults to None.
randomness (dict): Some settings to make the experiment as reproducible
as possible like seed and deterministic.
Defaults to ``dict(seed=None)``. If seed is None, a random number
will be generated and it will be broadcasted to all other processes
if in distributed environment. If ``cudnn_benchmarch`` is
``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in
``randomness``, the value of ``torch.backends.cudnn.benchmark``
will be ``False`` finally.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
experiment_name (str, optional): Name of current experiment. If not
specified, timestamp will be used as ``experiment_name``.
Defaults to None.
cfg (dict or Configdict or :obj:`Config`, optional): Full config.
Defaults to None.
Examples:
>>> from mmengine import Runner
>>> cfg = dict(
model=dict(type='ToyModel'),
work_dir='path/of/work_dir',
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
optimizer=dict(type='SGD', lr=0.01),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
val_evaluator=dict(type='ToyEvaluator'),
test_evaluator=dict(type='ToyEvaluator'),
train_cfg=dict(by_epoch=True, max_epochs=3),
val_cfg=dict(interval=1),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
logger=dict(type='LoggerHook'),
optimizer=dict(type='OptimizerHook', grad_clip=False),
param_scheduler=dict(type='ParamSchedulerHook')),
launcher='none',
env_cfg=dict(dist_cfg=dict(backend='nccl')),
writer=dict(
name='composed_writer',
writers=[dict(type='LocalWriter', save_dir='temp_dir')])
)
self,
model: Union[nn.Module, Dict],
work_dir: str,
train_dataloader: Optional[Union[DataLoader, Dict]] = None,
val_dataloader: Optional[Union[DataLoader, Dict]] = None,
test_dataloader: Optional[Union[DataLoader, Dict]] = None,
train_cfg: Optional[Dict] = None,
val_cfg: Optional[Dict] = None,
test_cfg: Optional[Dict] = None,
optimizer: Optional[Union[Optimizer, Dict]] = None,
param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None,
val_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
test_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
load_from: Optional[str] = None,
resume: bool = False,
launcher: str = 'none',
env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')),
writer: Optional[Union[ComposedWriter, Dict]] = None,
default_scope: Optional[str] = None,
experiment_name: Optional[str] = None,
cfg: Optional[ConfigType] = None,
):
self._work_dir = osp.abspath(work_dir)
mmengine.mkdir_or_exist(self._work_dir)
# recursively copy the `cfg` because `self.cfg` will be modified
# everywhere.
if cfg is not None:
self.cfg = copy.deepcopy(cfg)
else:
self.cfg = dict()
self._epoch = 0
self._iter = 0
# lazy initialization
training_related = [train_dataloader, train_cfg, optimizer]
if not (all(item is None for item in training_related)
or all(item is not None for item in training_related)):
raise ValueError(
'train_dataloader, train_cfg, and optimizer should be either '
'all None or not None, but got '
f'train_dataloader={train_dataloader}, '
f'train_cfg={train_cfg}, '
self.train_dataloader = train_dataloader
self.train_loop = train_cfg
self.optimizer = optimizer
# If there is no need to adjust learning rate, momentum or other
# parameters of optimizer, param_scheduler can be None
if param_scheduler is not None and self.optimizer is None:
raise ValueError(
'param_scheduler should be None when optimizer is None, '
f'but got {param_scheduler}')
if not isinstance(param_scheduler, Sequence):
self.param_schedulers = [param_scheduler]
else:
self.param_schedulers = param_scheduler
val_related = [val_dataloader, val_cfg, val_evaluator]
if not (all(item is None
for item in val_related) or all(item is not None
for item in val_related)):
raise ValueError(
'val_dataloader, val_cfg, and val_evaluator should be either '
'all None or not None, but got '
f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, '
f'val_evaluator={val_evaluator}')
self.val_dataloader = val_dataloader
self.val_loop = val_cfg
self.val_evaluator = val_evaluator
test_related = [test_dataloader, test_cfg, test_evaluator]
if not (all(item is None for item in test_related)
or all(item is not None for item in test_related)):
raise ValueError(
'test_dataloader, test_cfg, and test_evaluator should be '
'either all None or not None, but got '
f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, '
f'test_evaluator={test_evaluator}')
self.test_dataloader = test_dataloader
self.test_loop = test_cfg
self.test_evaluator = test_evaluator
self._launcher = launcher
if self._launcher == 'none':
self._distributed = False
else:
self._distributed = True
# self._timestamp will be set in the `setup_env` method. Besides,
# it also will initialize multi-process and (or) distributed
# environment.
self.setup_env(env_cfg)
# self._deterministic and self._seed will be set in the
# `set_randomness`` method
self.set_randomness(**randomness)
if experiment_name is not None:
self._experiment_name = f'{experiment_name}_{self._timestamp}'
elif self.cfg.get('filename') is not None:
filename_no_ext = osp.splitext(osp.basename(
self.cfg['filename']))[0]
self._experiment_name = f'{filename_no_ext}_{self._timestamp}'
else:
self._experiment_name = self.timestamp
self.logger = self.build_logger(log_level=log_level)
# message hub used for component interaction
self.message_hub = self.build_message_hub()
# writer used for writing log or visualizing all kinds of data
self.writer = self.build_writer(writer)
# Used to reset registries location. See :meth:`Registry.build` for
# more details.
self.default_scope = DefaultScope.get_instance(
self._experiment_name, scope_name=default_scope)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
self._load_from = load_from
self._resume = resume
# flag to mark whether checkpoint has been loaded or resumed
self._has_loaded = False
# build a model
self.model = self.build_model(model)
# wrap model
self.model = self.wrap_model(
self.cfg.get('model_wrapper_cfg'), self.model)
# get model name from the model class
if hasattr(self.model, 'module'):
self._model_name = self.model.module.__class__.__name__
else:
self._model_name = self.model.__class__.__name__
self._hooks: List[Hook] = []
# register hooks to `self._hooks`
self.register_hooks(default_hooks, custom_hooks)
self.meta: dict = dict()
# dump `cfg` to `work_dir`
self.dump_config()
@classmethod
def from_cfg(cls, cfg: ConfigType) -> 'Runner':
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""Build a runner from config.
Args:
cfg (ConfigType): A config used for building runner. Keys of
``cfg`` can see :meth:`__init__`.
Returns:
Runner: A runner build from ``cfg``.
"""
cfg = copy.deepcopy(cfg)
runner = cls(
model=cfg['model'],
work_dir=cfg['work_dir'],
train_dataloader=cfg.get('train_dataloader'),
val_dataloader=cfg.get('val_dataloader'),
test_dataloader=cfg.get('test_dataloader'),
train_cfg=cfg.get('train_cfg'),
val_cfg=cfg.get('val_cfg'),
test_cfg=cfg.get('test_cfg'),
optimizer=cfg.get('optimizer'),
param_scheduler=cfg.get('param_scheduler'),
val_evaluator=cfg.get('val_evaluator'),
test_evaluator=cfg.get('test_evaluator'),
default_hooks=cfg.get('default_hooks'),
custom_hooks=cfg.get('custom_hooks'),
load_from=cfg.get('load_from'),
resume=cfg.get('resume', False),
launcher=cfg.get('launcher', 'none'),
env_cfg=cfg.get('env_cfg'), # type: ignore
log_level=cfg.get('log_level', 'INFO'),
writer=cfg.get('writer'),
default_scope=cfg.get('default_scope'),
randomness=cfg.get('randomness', dict(seed=None)),
experiment_name=cfg.get('experiment_name'),
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
cfg=cfg,
)
return runner
@property
def experiment_name(self):
"""str: Name of experiment."""
return self._experiment_name
@property
def model_name(self):
"""str: Name of the model, usually the module class name."""
return self._model_name
@property
def work_dir(self):
"""str: The working directory to save checkpoints and logs."""
return self._work_dir
@property
def epoch(self):
"""int: Current epoch."""
return self._epoch
@property
def iter(self):
"""int: Current epoch."""
return self._iter
@property
def launcher(self):
"""str: Way to launcher multi processes."""
return self._launcher
@property
def distributed(self):
"""bool: Whether current environment is distributed."""
return self._distributed
@property
def rank(self):
"""int: Rank of current process."""
return self._rank
@property
def world_size(self):
"""int: Number of processes participating in the job."""
return self._world_size
@property
def deterministic(self):
"""int: Whether cudnn to select deterministic algorithms."""
return self._deterministic
@property
def seed(self):
"""int: A number to set random modules."""
return self._seed
@property
def timestamp(self):
"""str: Timestamp when creating experiment."""
return self._timestamp
@property
def hooks(self):
"""list[:obj:`Hook`]: A list of registered hooks."""
return self._hooks
def setup_env(self, env_cfg: Dict) -> None:
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
"""Setup environment.
An example of ``env_cfg``::
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(
mp_start_method='fork',
opencv_num_threads=0
),
dist_cfg=dict(backend='nccl'),
)
Args:
env_cfg (dict): Config for setting environment.
"""
if env_cfg.get('cudnn_benchmark'):
torch.backends.cudnn.benchmark = True
if env_cfg.get('mp_cfg') is not None:
self._set_multi_processing(**env_cfg.get('mp_cfg')) # type: ignore
# init distributed env first, since logger depends on the dist info.
if self.distributed and env_cfg.get('dist_cfg') is not None:
init_dist(self.launcher, **env_cfg.get('dist_cfg')) # type: ignore
self._rank, self._world_size = get_dist_info()
timestamp = torch.tensor(time.time(), dtype=torch.float64)
# TODO: handled by broadcast
if self._world_size > 1 and torch.cuda.is_available():
timestamp = timestamp.cuda()
# broadcast timestamp from 0 process to other processes
broadcast(timestamp)
self._timestamp = time.strftime('%Y%m%d_%H%M%S',
time.localtime(timestamp.item()))
def _set_multi_processing(self,
mp_start_method: str = 'fork',
opencv_num_threads: int = 0) -> None:
"""Set multi-processing related environment.
Args:
mp_start_method (str): Set the method which should be used to start
child processes. Defaults to 'fork'.
opencv_num_threads (int): Number of threads for opencv.
Defaults to 0.
"""
# set multi-process start method as `fork` to speed up the training
if platform.system() != 'Windows':
current_method = mp.get_start_method(allow_none=True)
if (current_method is not None
and current_method != mp_start_method):
warnings.warn(
f'Multi-processing start method `{mp_start_method}` is '
f'different from the previous setting `{current_method}`.'
f'It will be force set to `{mp_start_method}`. You can '
'change this behavior by changing `mp_start_method` in '
'your config.')
mp.set_start_method(mp_start_method, force=True)
try:
import cv2
# disable opencv multithreading to avoid system being overloaded
cv2.setNumThreads(opencv_num_threads)
except ImportError:
pass
# setup OMP threads
# This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa
if 'OMP_NUM_THREADS' not in os.environ and self.distributed:
omp_num_threads = 1
warnings.warn(
'Setting OMP_NUM_THREADS environment variable for each process'
f' to be {omp_num_threads} in default, to avoid your system '
'being overloaded, please further tune the variable for '
'optimal performance in your application as needed.')
os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)
# setup MKL threads
if 'MKL_NUM_THREADS' not in os.environ and self.distributed:
mkl_num_threads = 1
warnings.warn(
'Setting MKL_NUM_THREADS environment variable for each process'
f' to be {mkl_num_threads} in default, to avoid your system '
'being overloaded, please further tune the variable for '
'optimal performance in your application as needed.')
os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)
def set_randomness(self, seed, deterministic: bool = False) -> None:
"""Set random seed to guarantee reproducible results.
Args:
seed (int): A number to set random modules.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Defaults to False.
See https://pytorch.org/docs/stable/notes/randomness.html for
more details.
self._deterministic = deterministic
self._seed = seed
if self._seed is None:
self._seed = sync_random_seed()
random.seed(self._seed)
np.random.seed(self._seed)
torch.manual_seed(self._seed)
torch.cuda.manual_seed_all(self._seed)
if deterministic:
if torch.backends.cudnn.benchmark:
warnings.warn(
'torch.backends.cudnn.benchmark is going to be set as '
'`False` to cause cuDNN to deterministically select an '
'algorithm')
torch.backends.cudnn.deterministic = True
if digit_version(TORCH_VERSION) >= digit_version('1.10.0'):
torch.use_deterministic_algorithms(True)
log_level: Union[int, str] = 'INFO',
log_file: str = None,
**kwargs) -> MMLogger:
"""Build a global asscessable MMLogger.
Args:
log_level (int or str): The log level of MMLogger handlers.
Defaults to 'INFO'.
log_file (str, optional): Path of filename to save log.
Defaults to None.
**kwargs: Remaining parameters passed to ``MMLogger``.
Returns:
MMLogger: A MMLogger object build from ``logger``.
"""
if log_file is None:
log_file = osp.join(self.work_dir, f'{self._experiment_name}.log')
log_cfg = dict(log_level=log_level, log_file=log_file, **kwargs)
log_cfg.setdefault('name', self._experiment_name)
return MMLogger.get_instance(**log_cfg) # type: ignore
def build_message_hub(self,
message_hub: Optional[Dict] = None) -> MessageHub:
"""Build a global asscessable MessageHub.
Args:
message_hub (dict, optional): A dict to build MessageHub object.
If not specified, default config will be used to build
MessageHub object. Defaults to None.
Returns:
MessageHub: A MessageHub object build from ``message_hub``.
"""
message_hub = dict(name=self._experiment_name)
elif isinstance(message_hub, dict):
# ensure message_hub containing name key
message_hub.setdefault('name', self._experiment_name)
else:
raise TypeError(
f'message_hub should be dict or None, but got {message_hub}')
return MessageHub.get_instance(**message_hub)
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
def build_writer(
self,
writer: Optional[Union[ComposedWriter,
Dict]] = None) -> ComposedWriter:
"""Build a global asscessable ComposedWriter.
Args:
writer (ComposedWriter or dict, optional): A ComposedWriter object
or a dict to build ComposedWriter object. If ``writer`` is a
ComposedWriter object, just returns itself. If not specified,
default config will be used to build ComposedWriter object.
Defaults to None.
Returns:
ComposedWriter: A ComposedWriter object build from ``writer``.
"""
if isinstance(writer, ComposedWriter):
return writer
elif writer is None:
writer = dict(
name=self._experiment_name,
writers=[dict(type='LocalWriter', save_dir=self._work_dir)])
elif isinstance(writer, dict):
# ensure writer containing name key
writer.setdefault('name', self._experiment_name)
else:
raise TypeError(
'writer should be ComposedWriter object, a dict or None, '
f'but got {writer}')
return ComposedWriter.get_instance(**writer)
def build_model(self, model: Union[nn.Module, Dict]) -> nn.Module:
"""Build model.
If ``model`` is a dict, it will be used to build a nn.Module object
and initialize the weights if it has ``init_weights`` method.
Else, if ``model`` is a nn.Module object it will be returned directly.
An example of ``model``::
model = dict(type='ResNet')
Args:
model (nn.Module or dict): A nn.Module object or a dict to build
nn.Module object. If ``model`` is a nn.Module object, just
returns itself.
Returns:
nn.Module: Model build from ``model``.
"""
if isinstance(model, nn.Module):
return model
elif isinstance(model, dict):
model = MODELS.build(model)
# init weights
if hasattr(model, 'init_weights'):
model.init_weights()
return model
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
else:
raise TypeError('model should be a nn.Module object or dict, '
f'but got {model}')
def wrap_model(self, model_wrapper_cfg: Optional[Dict],
model: nn.Module) -> nn.Module:
"""Wrap model.
An example of ``model_wrapper_cfg``::
model_wrapper_cfg = dict(
broadcast_buffers=False,
find_unused_parameters=False
)
Args:
model_wrapper_cfg (dict, optional): Config to wrap model. If not
specified, ``DistributedDataParallel`` will be used in
distributed environment. Defaults to None.
model (nn.Module): Model to be wrapped.
Returns:
nn.Module: Wrapped model.
"""
if is_model_wrapper(model):
if model_wrapper_cfg is not None:
raise TypeError(
'model has been wrapped and "model_wrapper_cfg" should be '
f'None, but got {model_wrapper_cfg}')
return model
if model_wrapper_cfg is None:
if self.distributed:
find_unused_parameters = self.cfg.get('find_unused_parameters',
False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = DistributedDataParallel(
self.model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
# Set `export CUDA_VISIBLE_DEVICES=-1` can enable CPU training.
if torch.cuda.is_available():
model = model.cuda()
else:
model = MODEL_WRAPPERS.build(
model_wrapper_cfg, default_args=dict(model=self.model))
return model
def build_optimizer(self, optimizer: Union[Optimizer, Dict]) -> Optimizer:
"""Build optimizer.
An example of ``optimizer``::
optimizer = dict(type='SGD', lr=0.01)
Args:
optimizer (Optimizer or dict): An Optimizer object or a dict to
build Optimizer object. If ``optimizer`` is an Optimizer
object, just returns itself.
Returns:
Optimizer: Optimizer build from ``optimizer_cfg``.
"""
if isinstance(optimizer, Optimizer):
return optimizer
elif isinstance(optimizer, dict):
optimizer = build_optimizer(self.model, optimizer)
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
return optimizer
else:
raise TypeError('optimizer should be an Optimizer object or dict, '
f'but got {optimizer}')
def build_param_scheduler(
self, scheduler: Union[_ParamScheduler, Dict,
List]) -> List[_ParamScheduler]:
"""Build parameter schedulers.
Examples of ``scheduler``::
scheduler = dict(type='MultiStepLR', milestones=[1, 2])
# scheduler can also be a list of dict
scheduler = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
]
Args:
scheduler (_ParamScheduler or dict or list): A Param Scheduler
object or a dict or list of dict to build parameter schedulers.
Returns:
list[:obj:`_ParamScheduler`]: List of parameter schedulers build
from ``scheduler``.
"""
if not isinstance(self.optimizer, Optimizer):
raise RuntimeError(
'`build_optimizer` should be called before'
'`build_param_scheduler` because the latter depends on the '
'former')
if not isinstance(scheduler, Sequence):
schedulers = [scheduler]
else:
schedulers = scheduler
param_schedulers = []
for _scheduler in schedulers:
if isinstance(_scheduler, _ParamScheduler):
param_schedulers.append(_scheduler)
elif isinstance(_scheduler, dict):
param_schedulers.append(
PARAM_SCHEDULERS.build(
_scheduler,
default_args=dict(optimizer=self.optimizer)))
else:
raise TypeError(
'_scheduler should be a _ParamScheduler object or dict, '
f'but got {_scheduler}')
return param_schedulers
def build_evaluator(
self, evaluator: Union[Dict, List[Dict], Evaluator]) -> Evaluator:
"""Build evaluator.
Examples of ``evaluator``::
evaluator = dict(type='ToyMetric')
# evaluator can also be a list of dict
evaluator = [
dict(type='ToyEvaluator2')
]
Args:
evaluator (Evaluator or dict or list):
An Evaluator object or a config dict or list of config dict
Evaluator: Evaluator build from ``evaluator``.
if isinstance(evaluator, Evaluator):
return evaluator
elif isinstance(evaluator, dict) or is_list_of(evaluator, dict):
return Evaluator(evaluator) # type: ignore
'evaluator should be one of dict, list of dict, and Evaluator'
f', but got {evaluator}')
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
def build_dataloader(self, dataloader: Union[DataLoader,
Dict]) -> DataLoader:
"""Build dataloader.
The method builds three components:
- Dataset
- Sampler
- Dataloader
An example of ``dataloader``::
dataloader = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=9
)
Args:
dataloader (DataLoader or dict): A Dataloader object or a dict to
build Dataloader object. If ``dataloader`` is a Dataloader
object, just returns itself.
Returns:
Dataloader: DataLoader build from ``dataloader_cfg``.
"""
if isinstance(dataloader, DataLoader):
return dataloader
dataloader_cfg = copy.deepcopy(dataloader)
# build dataset
dataset_cfg = dataloader_cfg.pop('dataset')
if isinstance(dataset_cfg, dict):
dataset = DATASETS.build(dataset_cfg)
else:
# fallback to raise error in dataloader
# if `dataset_cfg` is not a valid type
dataset = dataset_cfg
# build sampler
sampler_cfg = dataloader_cfg.pop('sampler')
if isinstance(sampler_cfg, dict):
sampler = DATA_SAMPLERS.build(
sampler_cfg, default_args=dict(dataset=dataset))
else:
# fallback to raise error in dataloader
# if `sampler_cfg` is not a valid type
sampler = sampler_cfg
# build batch sampler
batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None)
if batch_sampler_cfg is None:
batch_sampler = None
elif isinstance(batch_sampler_cfg, dict):
batch_sampler = DATA_SAMPLERS.build(
batch_sampler_cfg,
default_args=dict(
sampler=sampler,
batch_size=dataloader_cfg.pop('batch_size')))
else:
# fallback to raise error in dataloader
# if `batch_sampler_cfg` is not a valid type
batch_sampler = batch_sampler_cfg
# build dataloader
init_fn: Optional[partial]
if self.seed is not None:
init_fn = partial(
worker_init_fn,
num_workers=dataloader_cfg.get('num_workers'),
rank=self.rank,
seed=self.seed)
else:
init_fn = None
# The default behavior of `collat_fn` in dataloader is to
# merge a list of samples to form a mini-batch of Tensor(s).
# However, to make this more flexible, collate_fn in MMengine does
# nothing. The action to merge a list of samples will be handled
# in model.
data_loader = DataLoader(
dataset=dataset,
sampler=sampler if batch_sampler is None else None,
batch_sampler=batch_sampler,
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
collate_fn=pseudo_collate,
worker_init_fn=init_fn,
**dataloader_cfg)
return data_loader
def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build training loop.
Examples of ``loop``::
# `EpochBasedTrainLoop` will be used
loop = dict(by_epoch=True, max_epochs=3)
# `IterBasedTrainLoop` will be used
loop = dict(by_epoch=False, max_epochs=3)
# custom training loop
loop = dict(type='CustomTrainLoop', max_epochs=3)
Args:
loop (BaseLoop or dict): A training loop or a dict to build
training loop. If ``loop`` is a training loop object, just
returns itself.
Returns:
:obj:`BaseLoop`: Training loop object build from ``loop``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop)
if 'type' in loop_cfg and 'by_epoch' in loop_cfg:
raise RuntimeError(
'Only one of `type` or `by_epoch` can exist in `loop_cfg`.')
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self, dataloader=self.train_dataloader))
else:
by_epoch = loop_cfg.pop('by_epoch')
if by_epoch:
loop = EpochBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self.train_dataloader)
else:
loop = IterBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self.train_dataloader)
# `build_optimizer` should be called before `build_param_scheduler`
# because the latter depends on the former
self.optimizer = self.build_optimizer(self.optimizer)
self.param_schedulers = self.build_param_scheduler( # type: ignore
self.param_schedulers) # type: ignore
return loop # type: ignore
def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build validation loop.
Examples of ``loop``:
# `ValLoop` will be used
loop = dict(interval=1)
# custom validation loop
loop = dict(type='CustomValLoop', interval=1)
Args:
loop (BaseLoop or dict): A validation loop or a dict to build
validation loop. If ``loop`` is a validation loop object, just
returns itself.
Returns:
:obj:`BaseLoop`: Validation loop object build from ``loop``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'train_loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop)
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self,
dataloader=self.val_dataloader,
evaluator=self.val_evaluator))
else:
loop = ValLoop(
runner=self,
dataloader=self.val_dataloader,
evaluator=self.val_evaluator, # type: ignore
**loop_cfg,
) # type: ignore
return loop # type: ignore
def build_test_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build test loop.
Examples of ``loop``:
# `TestLoop` will be used
loop = dict()
# custom test loop
loop = dict(type='CustomTestLoop')
Args:
loop (BaseLoop or dict): A test loop or a dict to build test loop.
If ``loop`` is a test loop object, just returns itself.
Args:
loop_cfg (dict): Config to build test loop.
Returns:
:obj:`BaseLoop`: Test loop object build from ``loop_cfg``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'train_loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop) # type: ignore
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self,
dataloader=self.test_dataloader,
evaluator=self.test_evaluator))
else:
loop = TestLoop(
runner=self,
dataloader=self.test_dataloader,
evaluator=self.test_evaluator) # type: ignore
return loop # type: ignore
def load_or_resume(self) -> None:
"""load or resume checkpoint."""
if self._has_loaded:
return None
# decide to load from checkpoint or resume from checkpoint
resume_from = None
if self._resume and self._load_from is None:
# auto resume from the latest checkpoint
resume_from = find_latest_checkpoint(self.work_dir)
self.logger.info(
f'Auto resumed from the latest checkpoint {resume_from}.')
elif self._resume and self._load_from is not None:
# resume from the specified checkpoint
resume_from = self._load_from
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
if resume_from is not None:
self.resume(resume_from)
self._has_loaded = True
elif self._load_from is not None:
self.load_checkpoint(self._load_from)
self._has_loaded = True
def train(self) -> None:
"""Launch training."""
if self.train_loop is None:
raise RuntimeError(
'`self.train_loop` should not be None when calling train '
'method. Please provide `train_dataloader`, `train_cfg`, '
'`optimizer` and `param_scheduler` arguments when '
'initializing runner.')
self.train_loop = self.build_train_loop(
self.train_loop) # type: ignore
if self.val_loop is not None:
self.val_loop = self.build_val_loop(self.val_loop) # type: ignore
self.load_or_resume()
# TODO: add a contextmanager to avoid calling `before_run` many times
self.call_hook('before_run')
self.train_loop.run() # type: ignore
self.call_hook('after_run')
def val(self) -> None:
"""Launch validation."""
if self.val_loop is None:
raise RuntimeError(
'`self.val_loop` should not be None when calling val method.'
'Please provide `val_dataloader`, `val_cfg` and '
'`val_evaluator` arguments when initializing runner.')
self.val_loop = self.build_val_loop(self.val_loop) # type: ignore
self.load_or_resume()
self.call_hook('before_run')
self.val_loop.run() # type: ignore
self.call_hook('after_run')
def test(self) -> None:
"""Launch test."""
if self.test_loop is None:
raise RuntimeError(
'`self.test_loop` should not be None when calling test method.'
'Please provide `test_dataloader`, `test_cfg` and '
'`test_evaluator` arguments when initializing runner.')
self.test_loop = self.build_test_loop(self.test_loop) # type: ignore
self.load_or_resume()
self.call_hook('before_run')
self.test_loop.run() # type: ignore
self.call_hook('after_run')
def call_hook(self, fn_name: str, **kwargs) -> None:
"""Call all hooks.
Args:
fn_name (str): The function name in each hook to be called, such as
"before_train_epoch".
**kwargs: Keyword arguments passed to hook.
"""
for hook in self._hooks:
# support adding additional custom hook methods
if hasattr(hook, fn_name):
getattr(hook, fn_name)(self, **kwargs)
def register_hook(
self,
hook: Union[Hook, Dict],
priority: Optional[Union[str, int, Priority]] = None) -> None:
"""Register a hook into the hook list.
The hook will be inserted into a priority queue, with the specified
priority (See :class:`Priority` for details of priorities).
For hooks with the same priority, they will be triggered in the same
order as they are registered.
Priority of hook will be decided with the following priority:
- ``priority`` argument. If ``priority`` is given, it will be priority
of hook.
- If ``hook`` argument is a dict and ``priority`` in it, the priority
will be the value of ``hook['priority']``.
- If ``hook`` argument is a dict but ``priority`` not in it or ``hook``
is an instance of ``hook``, the priority will be ``hook.priority``.
Args:
hook (:obj:`Hook` or dict): The hook to be registered.
priority (int or str or :obj:`Priority`, optional): Hook priority.
Lower value means higher priority.
"""
if not isinstance(hook, (Hook, dict)):
raise TypeError(
f'hook should be an instance of Hook or dict, but got {hook}')
_priority = None
if isinstance(hook, dict):
if 'priority' in hook:
_priority = hook.pop('priority')
hook_obj = HOOKS.build(hook)
else:
hook_obj = hook
if priority is not None:
hook_obj.priority = priority
elif _priority is not None:
hook_obj.priority = _priority
inserted = False
for i in range(len(self._hooks) - 1, -1, -1):
if get_priority(hook_obj.priority) >= get_priority(
self._hooks[i].priority):
self._hooks.insert(i + 1, hook_obj)
inserted = True
break
if not inserted:
self._hooks.insert(0, hook_obj)
def register_default_hooks(
self,
hooks: Optional[Dict[str, Union[Hook, Dict]]] = None) -> None:
"""Register default hooks into hook list.
``hooks`` will be registered into runner to execute some default
actions like updating model parameters or saving checkpoints.
Default hooks and their priorities:
+----------------------+-------------------------+
| Hooks | Priority |
+======================+=========================+
| OptimizerHook | HIGH (30) |
+----------------------+-------------------------+
| IterTimerHook | NORMAL (40) |
+----------------------+-------------------------+
| DistSamplerSeedHook | NORMAL (40) |
+----------------------+-------------------------+
| LoggerHook | BELOW_NORMAL (60) |
+----------------------+-------------------------+
| ParamSchedulerHook | LOW (70) |
+----------------------+-------------------------+
| CheckpointHook | VERY_LOW (90) |
+----------------------+-------------------------+
If ``hooks`` is None, above hooks will be registered by
default::
default_hooks = dict(
optimizer=dict(type='OptimizerHook', grad_clip=None),
timer=dict(type='IterTimerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
)
If not None, ``hooks`` will be merged into ``default_hooks``.
If there are None value in default_hooks, the corresponding item will
be popped from ``default_hooks``::
hooks = dict(timer=None)
The final registered default hooks will be :obj:`OptimizerHook`,
:obj:`LoggerHook`, :obj:`ParamSchedulerHook` and :obj:`CheckpointHook`.
Args:
hooks (dict[str, Hook or dict], optional): Default hooks or configs
to be registered.
"""
default_hooks: dict = dict(
optimizer=dict(type='OptimizerHook', grad_clip=None),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
sampler_seed=dict(type='DistSamplerSeedHook'),
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
)
if hooks is not None:
for name, hook in hooks.items():
if name in default_hooks and hook is None:
# remove hook from _default_hooks
default_hooks.pop(name)
else:
assert hook is not None
default_hooks[name] = hook
for hook in default_hooks.values():
self.register_hook(hook)
def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None:
"""Register custom hooks into hook list.
Args:
hooks (list[Hook | dict]): List of hooks or configs to be
registered.
"""
for hook in hooks:
self.register_hook(hook)
def register_hooks(
self,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None) -> None:
"""Register default hooks and custom hooks into hook list.
Args:
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks
to execute default actions like updating model parameters and
saving checkpoints. Defaults to None.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
"""
self.register_default_hooks(default_hooks)
if custom_hooks is not None:
self.register_custom_hooks(custom_hooks)
def resume(self,
filename: str,
resume_optimizer: bool = True,
resume_param_scheduler: bool = True,
map_location: Union[str, Callable] = 'default') -> None:
"""Resume model from checkpoint.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
resume_optimizer (bool): Whether to resume optimizer state.
Defaults to True.
resume_param_scheduler (bool): Whether to resume param scheduler
state. Defaults to True.
map_location (str or callable):A string or a callable function to
specifying how to remap storage locations.
Defaults to 'default'.
"""
if map_location == 'default':
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
checkpoint = self.load_checkpoint(
filename,
map_location=lambda storage, loc: storage.cuda(device_id))
else:
checkpoint = self.load_checkpoint(filename)
else:
checkpoint = self.load_checkpoint(
filename, map_location=map_location)
self._epoch = checkpoint['meta']['epoch']
self._iter = checkpoint['meta']['iter']
if self.meta is None:
self.meta = {}
self.meta.setdefault('hook_msgs', {})
# load `last_ckpt`, `best_score`, `best_ckpt`, etc. for hook messages
self.meta['hook_msgs'].update(checkpoint['meta'].get('hook_msgs', {}))
# check whether the number of GPU used for current experiment
# is consistent with resuming from checkpoint
if 'config' in checkpoint['meta']:
config = mmengine.Config.fromstring(
checkpoint['meta']['config'], file_format='.py')
previous_gpu_ids = config.get('gpu_ids', None)
if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0
and len(previous_gpu_ids) != self._world_size):
# TODO, should we modify the iteration?
self.logger.info(
'Number of GPU used for current experiment is not '
'consistent with resuming from checkpoint')
# resume meta information meta
self.meta = checkpoint['meta']
# resume optimizer
if 'optimizer' in checkpoint and resume_optimizer:
self.optimizer = self.build_optimizer(self.optimizer)
self.optimizer.load_state_dict(checkpoint['optimizer'])
# resume param scheduler
if 'param_schedulers' in checkpoint and resume_param_scheduler:
self.param_schedulers = self.build_param_scheduler( # type: ignore
self.param_schedulers)
for cur_scheduler, ckpt_scheduler in zip(
self.param_schedulers, checkpoint['param_schedulers']):
cur_scheduler.load_state_dict(ckpt_scheduler) # type: ignore
self._has_loaded = True
self.logger.info(f'resumed epoch: {self._epoch}, iter: {self._iter}')
def load_checkpoint(self,
filename: str,
map_location: Union[str, Callable] = 'cpu',
strict: bool = False,
revise_keys: list = [(r'^module.', '')]):
"""Load checkpoint from given ``filename``.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
map_location (str or callable): A string or a callable function to
specifying how to remap storage locations.
Defaults to 'cpu'.
strict (bool): strict (bool): Whether to allow different params for
the model and checkpoint.
revise_keys (list): A list of customized keywords to modify the
state_dict in checkpoint. Each item is a (pattern, replacement)
pair of the regular expression operations. Default: strip
the prefix 'module.' by [(r'^module\\.', '')].
"""
checkpoint = _load_checkpoint(filename, map_location=map_location)
# Add comments to describe the usage of `after_load_ckpt`
self.call_hook('after_load_ckpt', checkpoint=checkpoint)
if is_model_wrapper(self.model):
model = self.model.module
else:
model = self.model
checkpoint = _load_checkpoint_to_model(
model, checkpoint, strict, revise_keys=revise_keys)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
self._has_loaded = True
self.logger.info(f'Load checkpoint from {filename}')
return checkpoint
@master_only
def save_checkpoint(self,
out_dir: str,
filename: str,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
meta: dict = None,
create_symlink: bool = True,
by_epoch: bool = True):
"""Save checkpoints.
``CheckpointHook`` invokes this method to save checkpoints
periodically.
Args:
out_dir (str): The directory that checkpoints are saved.
filename (str): The checkpoint filename.
save_optimizer (bool): Whether to save the optimizer to
the checkpoint. Defaults to True.
save_param_scheduler (bool): Whether to save the param_scheduler
to the checkpoint. Defaults to True.
meta (dict, optional): The meta information to be saved in the
checkpoint. Defaults to None.
create_symlink (bool): Whether to create a symlink
"latest.pth" to point to the latest checkpoint.
Defaults to True.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(
f'meta should be a dict or None, but got {type(meta)}')
if self.meta is not None:
meta.update(self.meta)
if by_epoch:
# self._epoch increments 1 after
# `self.call_hook('after_train_epoch)` but `save_checkpoint` is
# called by `after_train_epoch`` method of `CheckpointHook` so
# `epoch` should be `self_epoch + 1`
meta.update(epoch=self._epoch + 1, iter=self._iter)
else:
meta.update(epoch=self._epoch, iter=self._iter + 1)
filepath = osp.join(out_dir, filename)
if hasattr(self.model, 'CLASSES') and self.model.CLASSES is not None:
# save class name to the meta
meta.update(CLASSES=self.model.CLASSES)
if is_model_wrapper(self.model):
model = self.model.module
else:
model = self.model
checkpoint = {
'meta': meta,
'state_dict': weights_to_cpu(get_state_dict(model))
}
# save optimizer state dict to checkpoint
if save_optimizer:
if isinstance(self.optimizer, Optimizer):
checkpoint['optimizer'] = self.optimizer.state_dict()
else: # TODO
raise TypeError(
'self.optimizer should be an optimizer, but got '
f'{self.optimizer}')
# save param scheduler state dict
if save_param_scheduler:
checkpoint['param_schedulers'] = []
for _scheduler in self.param_schedulers:
state_dict = _scheduler.state_dict() # type: ignore
checkpoint['param_schedulers'].append(state_dict)
self.call_hook('before_save_ckpt', checkpoint=checkpoint)
save_checkpoint(checkpoint, filepath)
# in some environments, `os.symlink` is not supported, you may need to
# set `create_symlink` to False
if create_symlink:
dst_file = osp.join(out_dir, 'latest.pth')
if platform.system() != 'Windows':
symlink(filename, dst_file)
else:
shutil.copy(filepath, dst_file)
@master_only
def dump_config(self) -> None:
"""Dump config to `work_dir`."""
if isinstance(self.cfg,
Config) and self.cfg.get('filename') is not None:
self.cfg.dump(
osp.join(self.work_dir, osp.basename(self.cfg.filename)))
elif self.cfg:
# TODO
pass