Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import unittest
import torch
import torch.nn as nn
import mmengine
from mmengine.device import get_device
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class TestAmp(unittest.TestCase):
def test_autocast(self):
if not torch.cuda.is_available():
if digit_version(TORCH_VERSION) < digit_version('1.10.0'):
# `torch.cuda.amp.autocast` is only support in gpu mode, if
# cuda is not available, it will return an empty context and
# should not accept any arguments.
with self.assertRaisesRegex(RuntimeError,
'If pytorch versions is '):
with autocast():
pass
with autocast(enabled=False):
layer = nn.Conv2d(1, 1, 1)
res = layer(torch.randn(1, 1, 1, 1))
self.assertEqual(res.dtype, torch.float32)
else:
with autocast(device_type='cpu'):
# torch.autocast support cpu mode.
layer = nn.Conv2d(1, 1, 1)
res = layer(torch.randn(1, 1, 1, 1))
self.assertIn(res.dtype, (torch.bfloat16, torch.float16))
with autocast(enabled=False):
res = layer(torch.randn(1, 1, 1, 1))
self.assertEqual(res.dtype, torch.float32)
else:
if digit_version(TORCH_VERSION) < digit_version('1.10.0'):
devices = ['cuda']
else:
devices = ['cpu', 'cuda']
for device in devices:
with autocast(device_type=device):
# torch.autocast support cpu and cuda mode.
layer = nn.Conv2d(1, 1, 1).to(device)
res = layer(torch.randn(1, 1, 1, 1).to(device))
self.assertIn(res.dtype, (torch.bfloat16, torch.float16))
with autocast(enabled=False, device_type=device):
res = layer(torch.randn(1, 1, 1, 1).to(device))
self.assertEqual(res.dtype, torch.float32)
# Test with fp32_enabled
with autocast(enabled=False, device_type=device):
layer = nn.Conv2d(1, 1, 1).to(device)
res = layer(torch.randn(1, 1, 1, 1).to(device))
self.assertEqual(res.dtype, torch.float32)
# Test mps
if digit_version(TORCH_VERSION) >= digit_version('1.12.0'):
mmengine.runner.amp.get_device = lambda: 'mps'
with autocast(enabled=False):
layer = nn.Conv2d(1, 1, 1)
res = layer(torch.randn(1, 1, 1, 1))
self.assertEqual(res.dtype, torch.float32)
with self.assertRaisesRegex(ValueError,
'User specified autocast device_type'):
with autocast(enabled=True):
pass
# Native pytorch does not support mlu, here we simply test autocast
# will call `torch.autocast`, which will be overridden by mlu version
# pytorch
mmengine.runner.amp.get_device = lambda: 'mlu'
with self.assertRaises(RuntimeError):
with autocast(enabled=False):
pass
mmengine.runner.amp.get_device = get_device