Skip to content
Snippets Groups Projects
param_scheduler.py 24.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
import weakref
from collections import Counter
from functools import wraps
from typing import Callable, List

from torch.optim import Optimizer

from mmengine.registry import PARAM_SCHEDULERS

INF = int(1e9)


class _ParamScheduler:
    """Base class for parameter schedulers.

    It should be inherited by all schedulers that schedule parameters in the
    optimizer's ``param_groups``. All subclasses should overwrite the
    ``_get_value()`` according to their own schedule strategy.
    The implementation is motivated by
    https://github.com/pytorch/pytorch/blob/master/torch/optim/lr_scheduler.py.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        param_name (str): Name of the parameter to be adjusted, such as
            ``lr``, ``momentum``.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resuming without
            state dict. Default value ``-1`` means the ``step`` function is
            never be called before. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """  # noqa: E501

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):

        # Attach optimizer
        if not isinstance(optimizer, Optimizer):
            raise TypeError('``optimizer`` should be an Optimizer,'
                            'but got {}'.format(type(optimizer).__name__))
        self.optimizer = optimizer
        self.param_name = param_name

        if end <= begin:
            raise ValueError('end should be larger than begin, but got'
                             ' begin={}, end={}'.format(begin, end))
        self.begin = begin
        self.end = end

        self.by_epoch = by_epoch

        assert isinstance(last_step, int) and last_step >= -1
        # Initialize valid step count and base values
        if last_step == -1:
            for group in optimizer.param_groups:
                # If the param is never be scheduled, record the current value
                # as the initial value.
                group.setdefault(f'initial_{param_name}', group[param_name])
        else:
            for i, group in enumerate(optimizer.param_groups):
                if f'initial_{param_name}' not in group:
                    raise KeyError(
                        f"param 'initial_{param_name}' is not specified "
                        'in param_groups[{}] when resuming an optimizer'.
                        format(i))
        self.base_values = [
            group[f'initial_{param_name}'] for group in optimizer.param_groups
        ]
        self.last_step = last_step

        # Following https://github.com/pytorch/pytorch/issues/20124
        # We would like to ensure that `scheduler.step()` is called after
        # `optimizer.step()`
        def with_counter(method: Callable):
            if getattr(method, '_with_counter', False):
                # `optimizer.step()` has already been replaced, return.
                return method

            # Keep a weak reference to the optimizer instance to prevent
            # cyclic references.
            instance_ref = weakref.ref(method.__self__)  # type: ignore
            # Get the unbound method for the same purpose.
            func = method.__func__  # type: ignore
            cls = instance_ref().__class__  # type: ignore
            del method

            @wraps(func)
            def wrapper(*args, **kwargs):
                instance = instance_ref()
                instance._global_step += 1
                wrapped = func.__get__(instance, cls)
                return wrapped(*args, **kwargs)

            # Note that the returned function here is no longer a bound method,
            # so attributes like `__func__` and `__self__` no longer exist.
            wrapper._with_counter = True  # type: ignore
            return wrapper

        # add counter to optimizer
        self.optimizer.step = with_counter(self.optimizer.step)
        self.optimizer._global_step = -1

        self._global_step = -1
        self.verbose = verbose

        self.step()

    def state_dict(self) -> dict:
        """Returns the state of the scheduler as a :class:`dict`.

        It contains an entry for every variable in self.__dict__ which is not
        the optimizer.

        Returns:
            dict: scheduler state.
        """
        return {
            key: value
            for key, value in self.__dict__.items() if key != 'optimizer'
        }

    def load_state_dict(self, state_dict: dict):
        """Loads the schedulers state.

        Args:
            state_dict (dict): scheduler state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        self.__dict__.update(state_dict)

    def get_last_value(self):
        """Return the last computed value by current scheduler.

        Returns:
            list: A list of the last computed value of the optimizer's
            ``param_group``.
        """
        return self._last_value

    def _get_value(self):
        """Compute value using chainable form of the scheduler."""
        raise NotImplementedError

    def print_value(self, is_verbose: bool, group: int, value: float):
        """Display the current parameter value.

        Args:
            is_verbose (bool): Whether to print the value.
            group (int): The index of the current ``param_group``.
            value (float): The parameter value.
        """
        if is_verbose:
            print('Adjusting parameter value'
                  ' of group {} to {:.4e}.'.format(group, value))

    def step(self):
        """Adjusts the parameter value of each parameter group based on the
        specified schedule."""
        # Raise a warning if old pattern is detected
        # https://github.com/pytorch/pytorch/issues/20124
        if self._global_step == 0:
            if not hasattr(self.optimizer.step, '_with_counter'):
                warnings.warn(
                    'Seems like `optimizer.step()` has been overridden after'
                    'parameter value scheduler initialization. Please, make'
                    'sure to call `optimizer.step()` before'
                    '`scheduler.step()`. See more details at'
                    'https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate',  # noqa: E501
                    UserWarning)

            # Just check if there were two first scheduler.step() calls
            # before optimizer.step()
            elif self.optimizer._global_step < 0:
                warnings.warn(
                    'Detected call of `scheduler.step()` before'
                    '`optimizer.step()`. In PyTorch 1.1.0 and later, you'
                    'should call them in the opposite order: '
                    '`optimizer.step()` before `scheduler.step()`. '
                    'Failure to do this will result in PyTorch skipping '
                    'the first value of the parameter value schedule. '
                    'See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate',  # noqa: E501
                    UserWarning)
        self._global_step += 1

        # Compute parameter value per param group in the effective range
        if self.begin <= self._global_step < self.end:
            self.last_step += 1
            values = self._get_value()

            for i, data in enumerate(zip(self.optimizer.param_groups, values)):
                param_group, value = data
                param_group[self.param_name] = value
                self.print_value(self.verbose, i, value)

        self._last_value = [
            group[self.param_name] for group in self.optimizer.param_groups
        ]


@PARAM_SCHEDULERS.register_module()
class StepParamScheduler(_ParamScheduler):
    """Decays the parameter value of each parameter group by gamma every
    step_size epochs. Notice that such decay can happen simultaneously with
    other changes to the parameter value from outside this scheduler.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        step_size (int): Period of parameter value decay.
        gamma (float): Multiplicative factor of parameter value decay.
            Defaults to 0.1.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 step_size: int,
                 gamma: float = 0.1,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):
        self.step_size = step_size
        self.gamma = gamma
        super().__init__(
            optimizer=optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):
        if (self.last_step == 0) or (self.last_step % self.step_size != 0):
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]
        return [
            group[self.param_name] * self.gamma
            for group in self.optimizer.param_groups
        ]


@PARAM_SCHEDULERS.register_module()
class MultiStepParamScheduler(_ParamScheduler):
    """Decays the specified parameter in each parameter group by gamma once the
    number of epoch reaches one of the milestones. Notice that such decay can
    happen simultaneously with other changes to the parameter from outside this
    scheduler.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        milestones (list): List of epoch indices. Must be increasing.
        gamma (float): Multiplicative factor of parameter value decay.
            Defaults to 0.1.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 milestones: List[int],
                 gamma: float = 0.1,
                 last_step: int = -1,
                 begin: int = 0,
                 end: int = INF,
                 by_epoch: bool = True,
                 verbose: bool = False):
        self.milestones = Counter(milestones)
        self.gamma = gamma
        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):
        if self.last_step not in self.milestones:
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]
        return [
            group[self.param_name] *
            self.gamma**self.milestones[self.last_step]
            for group in self.optimizer.param_groups
        ]


@PARAM_SCHEDULERS.register_module()
class ConstantParamScheduler(_ParamScheduler):
    """Decays the parameter value of each parameter group by a small constant
    factor until the number of epoch reaches a pre-defined milestone: ``end``.
    Notice that such decay can happen simultaneously with other changes to the
    parameter value from outside this scheduler.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        factor (float): The number we multiply parameter value until the
            milestone. Defaults to 1./3.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 factor: float = 1.0 / 3,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):
        if factor > 1.0 or factor < 0:
            raise ValueError(
                'Constant multiplicative factor should between 0 and 1.')

        self.factor = factor
        self.total_iters = end - begin - 1
        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):
        if self.last_step == 0:
            return [
                group[self.param_name] * self.factor
                for group in self.optimizer.param_groups
            ]

        if (self.last_step > self.total_iters
                or (self.last_step != self.total_iters)):
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]

        if self.last_step == self.total_iters:
            return [
                group[self.param_name] * (1.0 / self.factor)
                for group in self.optimizer.param_groups
            ]


@PARAM_SCHEDULERS.register_module()
class ExponentialParamScheduler(_ParamScheduler):
    """Decays the parameter value of each parameter group by gamma every epoch.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        gamma (float): Multiplicative factor of parameter value decay.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 gamma: float,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):
        self.gamma = gamma
        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):
        if self.last_step == 0:
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]
        return [
            group[self.param_name] * self.gamma
            for group in self.optimizer.param_groups
        ]


@PARAM_SCHEDULERS.register_module()
class CosineAnnealingParamScheduler(_ParamScheduler):
    r"""Set the parameter value of each parameter group using a cosine annealing
    schedule, where :math:`\eta_{max}` is set to the initial value and
    :math:`T_{cur}` is the number of epochs since the last restart in SGDR:

    .. math::
        \begin{aligned}
            \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
            + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
            & T_{cur} \neq (2k+1)T_{max}; \\
            \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
            \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
            & T_{cur} = (2k+1)T_{max}.
        \end{aligned}

    Notice that because the schedule
    is defined recursively, the parameter value can be simultaneously modified
    outside this scheduler by other operators. If the parameter value is set
    solely by this scheduler, the parameter value at each step becomes:

    .. math::
        \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
        \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)

    It has been proposed in
    `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this
    only implements the cosine annealing part of SGDR, and not the restarts.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        T_max (int): Maximum number of iterations.
        eta_min (float): Minimum parameter value. Defaults to 0.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.

    .. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
        https://arxiv.org/abs/1608.03983
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 T_max: int,
                 eta_min: float = 0.,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):
        self.T_max = T_max
        self.eta_min = eta_min
        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):
        if self.last_step == 0:
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]
        elif (self.last_step - 1 - self.T_max) % (2 * self.T_max) == 0:
            return [
                group[self.param_name] + (base_value - self.eta_min) *
                (1 - math.cos(math.pi / self.T_max)) / 2
                for base_value, group in zip(self.base_values,
                                             self.optimizer.param_groups)
            ]
        return [(1 + math.cos(math.pi * self.last_step / self.T_max)) /
                (1 + math.cos(math.pi * (self.last_step - 1) / self.T_max)) *
                (group[self.param_name] - self.eta_min) + self.eta_min
                for group in self.optimizer.param_groups]


@PARAM_SCHEDULERS.register_module()
class LinearParamScheduler(_ParamScheduler):
    """Decays the parameter value of each parameter group by linearly changing
    small multiplicative factor until the number of epoch reaches a pre-defined
    milestone: ``end``.

    Notice that such decay can happen simultaneously with other changes to the
    parameter value from outside this scheduler.
    Args:
        optimizer (Optimizer): Wrapped optimizer.
        start_factor (float): The number we multiply parameter value in the
            first epoch. The multiplication factor changes towards end_factor
            in the following epochs. Defaults to 1./3.
        end_factor (float): The number we multiply parameter value at the end
            of linear changing process. Defaults to 1.0.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 start_factor: float = 1.0 / 3,
                 end_factor: float = 1.0,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):
        if start_factor > 1.0 or start_factor < 0:
            raise ValueError(
                'Starting multiplicative factor should between 0 and 1.')

        if end_factor > 1.0 or end_factor < 0:
            raise ValueError(
                'Ending multiplicative factor should between 0 and 1.')

        self.start_factor = start_factor
        self.end_factor = end_factor
        self.total_iters = end - begin - 1
        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):

        if self.last_step == 0:
            return [
                group[self.param_name] * self.start_factor
                for group in self.optimizer.param_groups
            ]

        return [
            group[self.param_name] *
            (1. + (self.end_factor - self.start_factor) /
             (self.total_iters * self.start_factor + (self.last_step - 1) *
              (self.end_factor - self.start_factor)))
            for group in self.optimizer.param_groups
        ]


@PARAM_SCHEDULERS.register_module()
class PolyParamScheduler(_ParamScheduler):
    """Decays the parameter value of each parameter group in a polynomial decay
    scheme.

    Notice that such decay can happen simultaneously with other changes to the
    parameter value from outside this scheduler.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        eta_min (float): Minimum parameter value at the end of scheduling.
            Defaults to 0.
        power (float): The power of the polynomial. Defaults to 1.0.
        begin (int): Step at which to start updating the parameters.
            Defaults to 0.
        end (int): Step at which to stop updating the parameters.
            Defaults to INF.
        last_step (int): The index of last step. Used for resume without
            state dict. Defaults to -1.
        by_epoch (bool): Whether the scheduled parameters are updated by
            epochs. Defaults to True.
        verbose (bool): Whether to print the value for each update.
            Defaults to False.
    """

    def __init__(self,
                 optimizer: Optimizer,
                 param_name: str,
                 eta_min: float = 0,
                 power: float = 1.0,
                 begin: int = 0,
                 end: int = INF,
                 last_step: int = -1,
                 by_epoch: bool = True,
                 verbose: bool = False):

        self.eta_min = eta_min
        self.power = power
        self.total_iters = end - begin - 1

        super().__init__(
            optimizer,
            param_name=param_name,
            begin=begin,
            end=end,
            last_step=last_step,
            by_epoch=by_epoch,
            verbose=verbose)

    def _get_value(self):

        if self.last_step == 0:
            return [
                group[self.param_name] for group in self.optimizer.param_groups
            ]

        return [(group[self.param_name] - self.eta_min) *
                (1 - 1 / (self.total_iters - self.last_step + 1))**self.power +
                self.eta_min for group in self.optimizer.param_groups]