Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import math
from unittest import TestCase
import torch
import torch.nn.functional as F
import torch.optim as optim
from mmengine.optim.scheduler import (ConstantLR, CosineAnnealingLR,
ExponentialLR, LinearLR, MultiStepLR,
PolyLR, StepLR, _ParamScheduler)
class ToyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 1, 1)
self.conv2 = torch.nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv2(F.relu(self.conv1(x)))
class TestLRScheduler(TestCase):
def setUp(self):
"""Setup the model and optimizer which are used in every test method.
TestCase calls functions in this order: setUp() -> testMethod() ->
tearDown() -> cleanUp()
"""
self.model = ToyModel()
self.optimizer = optim.SGD(
self.model.parameters(), lr=0.05, momentum=0.01, weight_decay=5e-4)
def test_base_scheduler_step(self):
with self.assertRaises(NotImplementedError):
_ParamScheduler(self.optimizer, param_name='lr')
def test_invalid_optimizer(self):
with self.assertRaisesRegex(TypeError, 'should be an Optimizer'):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
StepLR('invalid_optimizer', step_size=1)
def test_overwrite_optimzer_step(self):
# raise warning if the counter in optimizer.step() is overwritten
scheduler = ExponentialLR(self.optimizer, gamma=0.9)
def overwrite_fun():
pass
self.optimizer.step = overwrite_fun
self.optimizer.step()
self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate',
scheduler.step)
def test_resume(self):
# test invalid case: optimizer and scheduler are not both resumed
with self.assertRaisesRegex(KeyError,
"param 'initial_lr' is not specified"):
StepLR(self.optimizer, gamma=0.1, step_size=3, last_step=10)
# test manually resume with ``last_step`` instead of load_state_dict
epochs = 10
targets = [0.05 * (0.9**x) for x in range(epochs)]
scheduler = ExponentialLR(self.optimizer, gamma=0.9)
results = []
for epoch in range(5):
for param_group in self.optimizer.param_groups:
results.append(param_group['lr'])
# The order should be
# train_epoch() -> save_checkpoint() -> scheduler.step().
# Break at here to simulate the checkpoint is saved before
# the scheduler.step().
if epoch == 4:
break
scheduler.step()
scheduler2 = ExponentialLR(self.optimizer, gamma=0.9, last_step=4)
for epoch in range(6):
for param_group in self.optimizer.param_groups:
results.append(param_group['lr'])
scheduler2.step()
for epoch in range(epochs):
assert_allclose(
targets[epoch],
results[epoch],
msg='lr is wrong in epoch {}: expected {}, got {}'.format(
epoch, targets[epoch], results[epoch]),
atol=1e-5,
rtol=0)
def test_scheduler_before_optim_warning(self):
"""warns if scheduler is used before optimizer."""
def call_sch_before_optim():
scheduler = StepLR(self.optimizer, gamma=0.1, step_size=3)
scheduler.step()
self.optimizer.step()
# check warning doc link
self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate',
call_sch_before_optim)
# check warning when resume
for i, group in enumerate(self.optimizer.param_groups):
group['initial_lr'] = 0.01
def call_sch_before_optim_resume():
scheduler = StepLR(
self.optimizer, gamma=0.1, step_size=3, last_step=10)
scheduler.step()
self.optimizer.step()
# check warning doc link
self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate',
call_sch_before_optim_resume)
def test_get_last_value(self):
epochs = 10
targets = [[0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005]]
scheduler = StepLR(self.optimizer, 3, gamma=0.1)
for epoch in range(epochs):
result = scheduler.get_last_value()
self.optimizer.step()
scheduler.step()
target = [t[epoch] for t in targets]
for t, r in zip(target, result):
assert_allclose(
target,
result,
msg='LR is wrong in epoch {}: expected {}, got {}'.format(
epoch, t, r),
atol=1e-5,
rtol=0)
def test_scheduler_step_count(self):
iteration = 10
scheduler = StepLR(self.optimizer, gamma=0.1, step_size=3)
self.assertEqual(scheduler.last_step, 0)
target = [i + 1 for i in range(iteration)]
step_counts = []
for i in range(iteration):
self.optimizer.step()
scheduler.step()
step_counts.append(scheduler.last_step)
self.assertEqual(step_counts, target)
def test_effective_interval(self):
# check invalid begin end
with self.assertRaisesRegex(ValueError,
'end should be larger than begin'):
StepLR(self.optimizer, gamma=0.1, step_size=3, begin=10, end=5)
# lr = 0.05 if epoch == 0
# lr = 0.025 if epoch == 1
# lr = 0.03125 if epoch == 2
# lr = 0.0375 if epoch == 3
# lr = 0.04375 if epoch == 4
# lr = 0.005 if epoch > 4
begin = 1
epochs = 10
start_factor = 1.0 / 2
iters = 4
interpolation = [
start_factor + i * (1 - start_factor) / iters for i in range(iters)
]
single_targets = [0.05] * begin + [x * 0.05
for x in interpolation] + [0.05] * (
epochs - iters - begin)
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = LinearLR(
self.optimizer,
start_factor=start_factor,
begin=begin,
end=begin + iters + 1)
self._test_scheduler_value(scheduler, targets, epochs)
def _test_scheduler_value(self,
schedulers,
targets,
epochs=10,
param_name='lr'):
if isinstance(schedulers, _ParamScheduler):
schedulers = [schedulers]
for epoch in range(epochs):
for param_group, target in zip(self.optimizer.param_groups,
targets):
assert_allclose(
target[epoch],
param_group[param_name],
msg='{} is wrong in epoch {}: expected {}, got {}'.format(
param_name, epoch, target[epoch],
param_group[param_name]),
atol=1e-5,
rtol=0)
[scheduler.step() for scheduler in schedulers]
def test_step_scheduler(self):
# lr = 0.05 if epoch < 3
# lr = 0.005 if 3 <= epoch < 6
# lr = 0.0005 if 6 <= epoch < 9
# lr = 0.00005 if epoch >=9
epochs = 10
single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005
] * 3
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = StepLR(
self.optimizer, gamma=0.1, step_size=3, verbose=True)
self._test_scheduler_value(scheduler, targets, epochs)
def test_multi_step_scheduler(self):
# lr = 0.05 if epoch < 2
# lr = 0.005 if 2 <= epoch < 5
# lr = 0.0005 if 5 <= epoch < 9
# lr = 0.00005 if epoch >= 9
epochs = 10
single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005
] * 3
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = MultiStepLR(
self.optimizer, gamma=0.1, milestones=[2, 5, 9])
self._test_scheduler_value(scheduler, targets, epochs)
def test_constant_scheduler(self):
# factor should between 0~1
with self.assertRaises(ValueError):
ConstantLR(self.optimizer, factor=99)
# lr = 0.025 if epoch < 5
# lr = 0.005 if 5 <= epoch
epochs = 10
single_targets = [0.025] * 4 + [0.05] * 6
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = ConstantLR(self.optimizer, factor=1.0 / 2, end=5)
self._test_scheduler_value(scheduler, targets, epochs)
def test_linear_scheduler(self):
with self.assertRaises(ValueError):
LinearLR(self.optimizer, start_factor=10, end=900)
with self.assertRaises(ValueError):
LinearLR(self.optimizer, start_factor=-1, end=900)
with self.assertRaises(ValueError):
LinearLR(self.optimizer, end_factor=1.001, end=900)
with self.assertRaises(ValueError):
LinearLR(self.optimizer, end_factor=-0.00001, end=900)
# lr = 0.025 if epoch == 0
# lr = 0.03125 if epoch == 1
# lr = 0.0375 if epoch == 2
# lr = 0.04375 if epoch == 3
# lr = 0.005 if epoch >= 4
epochs = 10
start_factor = 1.0 / 2
iters = 4
interpolation = [
start_factor + i * (1 - start_factor) / iters for i in range(iters)
]
single_targets = [x * 0.05 for x in interpolation] + [0.05] * (
epochs - iters)
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = LinearLR(
self.optimizer, start_factor=start_factor, end=iters + 1)
self._test_scheduler_value(scheduler, targets, epochs)
def test_exp_scheduler(self):
epochs = 10
single_targets = [0.05 * (0.9**x) for x in range(epochs)]
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = ExponentialLR(self.optimizer, gamma=0.9)
self._test_scheduler_value(scheduler, targets, epochs)
def test_cos_anneal_scheduler(self):
epochs = 12
t = 10
eta_min = 1e-10
single_targets = [
eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / t)) / 2
for x in range(epochs)
]
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = CosineAnnealingLR(self.optimizer, T_max=t, eta_min=eta_min)
self._test_scheduler_value(scheduler, targets, epochs)
def test_poly_scheduler(self):
epochs = 10
power = 0.9
min_lr = 0.001
iters = 4
single_targets = [
min_lr + (0.05 - min_lr) * (1 - i / iters)**power
for i in range(iters)
] + [min_lr] * (
epochs - iters)
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler = PolyLR(
self.optimizer, power=power, eta_min=min_lr, end=iters + 1)
self._test_scheduler_value(scheduler, targets, epochs=10)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def _check_scheduler_state_dict(self, construct, construct2, epochs=10):
scheduler = construct()
for _ in range(epochs):
scheduler.optimizer.step()
scheduler.step()
scheduler_copy = construct2()
scheduler_copy.load_state_dict(scheduler.state_dict())
for key in scheduler.__dict__.keys():
if key != 'optimizer':
self.assertEqual(scheduler.__dict__[key],
scheduler_copy.__dict__[key])
self.assertEqual(scheduler.get_last_value(),
scheduler_copy.get_last_value())
def test_step_scheduler_state_dict(self):
self._check_scheduler_state_dict(
lambda: StepLR(self.optimizer, gamma=0.1, step_size=3),
lambda: StepLR(self.optimizer, gamma=0.01 / 2, step_size=1))
def test_multi_step_scheduler_state_dict(self):
self._check_scheduler_state_dict(
lambda: MultiStepLR(
self.optimizer, gamma=0.1, milestones=[2, 5, 9]),
lambda: MultiStepLR(
self.optimizer, gamma=0.01, milestones=[1, 4, 6]))
def test_exp_scheduler_state_dict(self):
self._check_scheduler_state_dict(
lambda: ExponentialLR(self.optimizer, gamma=0.1),
lambda: ExponentialLR(self.optimizer, gamma=0.01))
def test_cosine_scheduler_state_dict(self):
epochs = 10
eta_min = 1e-10
self._check_scheduler_state_dict(
lambda: CosineAnnealingLR(
self.optimizer, T_max=epochs, eta_min=eta_min),
lambda: CosineAnnealingLR(
self.optimizer, T_max=epochs // 2, eta_min=eta_min / 2),
epochs=epochs)
def test_linear_scheduler_state_dict(self):
epochs = 10
self._check_scheduler_state_dict(
lambda: LinearLR(self.optimizer, start_factor=1 / 3),
lambda: LinearLR(self.optimizer, start_factor=0, end_factor=0.3),
epochs=epochs)
def test_poly_scheduler_state_dict(self):
self._check_scheduler_state_dict(
lambda: PolyLR(self.optimizer, power=0.5, eta_min=0.001),
lambda: PolyLR(self.optimizer, power=0.8, eta_min=0.002),
epochs=10)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def test_multi_scheduler_without_overlap_linear_multi_step(self):
# use Linear in the first 5 epochs and then use MultiStep
epochs = 12
single_targets = [0.025, 0.03125, 0.0375, 0.04375
] + [0.05] * 4 + [0.005] * 3 + [0.0005] * 1
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler1 = LinearLR(
self.optimizer, start_factor=1 / 2, begin=0, end=5)
scheduler2 = MultiStepLR(
self.optimizer, gamma=0.1, milestones=[3, 6], begin=5, end=12)
self._test_scheduler_value([scheduler1, scheduler2], targets, epochs)
def test_multi_scheduler_without_overlap_exp_cosine(self):
# in the first 5 epochs use Exp and then use Cosine
epochs = 10
single_targets1 = [0.05 * (0.9**x) for x in range(5)]
scheduler1 = ExponentialLR(self.optimizer, gamma=0.9, begin=0, end=5)
eta_min = 1e-10
single_targets2 = [
eta_min + (single_targets1[-1] - eta_min) *
(1 + math.cos(math.pi * x / 5)) / 2 for x in range(5)
]
single_targets = single_targets1 + single_targets2
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler2 = CosineAnnealingLR(
self.optimizer, T_max=5, eta_min=eta_min, begin=5, end=10)
self._test_scheduler_value([scheduler1, scheduler2], targets, epochs)
def test_multi_scheduler_with_overlap(self):
# use Exp in the first 5 epochs and then use Cosine
epochs = 10
single_targets = [0.025, 0.03125, 0.0375, 0.004375
] + [0.005] * 2 + [0.0005] * 3 + [0.00005] * 1
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler1 = LinearLR(
self.optimizer, start_factor=1 / 2, begin=0, end=5)
scheduler2 = MultiStepLR(
self.optimizer, gamma=0.1, milestones=[3, 6, 9])
self._test_scheduler_value([scheduler1, scheduler2], targets, epochs)
def test_multi_scheduler_with_gap(self):
# use Exp in the first 5 epochs and the last 5 epochs use Cosine
# no scheduler in the middle 5 epochs
epochs = 15
single_targets1 = [0.05 * (0.9**x) for x in range(5)]
scheduler1 = ExponentialLR(self.optimizer, gamma=0.9, begin=0, end=5)
eta_min = 1e-10
single_targets2 = [
eta_min + (single_targets1[-1] - eta_min) *
(1 + math.cos(math.pi * x / 5)) / 2 for x in range(5)
]
single_targets = single_targets1 + [single_targets1[-1]
] * 5 + single_targets2
targets = [single_targets, [x * epochs for x in single_targets]]
scheduler2 = CosineAnnealingLR(
self.optimizer, T_max=5, eta_min=eta_min, begin=10, end=15)
self._test_scheduler_value([scheduler1, scheduler2], targets, epochs)