Skip to content
Snippets Groups Projects
README.md 15.7 KiB
Newer Older
Zaida Zhou's avatar
Zaida Zhou committed
<div align="center">
Xiang Xu's avatar
Xiang Xu committed
  <img src="https://user-images.githubusercontent.com/58739961/187154444-fce76639-ac8d-429b-9354-c6fac64b7ef8.jpg" width="600"/>
Zaida Zhou's avatar
Zaida Zhou committed
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmengine)](https://pypi.org/project/mmengine/)
[![PyPI](https://img.shields.io/pypi/v/mmengine)](https://pypi.org/project/mmengine)
[![license](https://img.shields.io/github/license/open-mmlab/mmengine.svg)](https://github.com/open-mmlab/mmengine/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmengine.svg)](https://github.com/open-mmlab/mmengine/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmengine.svg)](https://github.com/open-mmlab/mmengine/issues)

Xiang Xu's avatar
Xiang Xu committed
[📘Documentation](https://mmengine.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmengine.readthedocs.io/en/latest/get_started/installation.html) |
Zaida Zhou's avatar
Zaida Zhou committed
[🤔Reporting Issues](https://github.com/open-mmlab/mmengine/issues/new/choose)

</div>

<div align="center">

English | [简体中文](README_zh-CN.md)

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
</div>

Zaida Zhou's avatar
Zaida Zhou committed
## Introduction

Xin Li's avatar
Xin Li committed
MMEngine is a foundational library for training deep learning models based on PyTorch. It provides a solid engineering foundation and frees developers from writing redundant codes on workflows. It serves as the training engine of all OpenMMLab codebases, which support hundreds of algorithms in various research areas. Moreover, MMEngine is also generic to be applied to non-OpenMMLab projects.
Zaida Zhou's avatar
Zaida Zhou committed
Major features:

Xin Li's avatar
Xin Li committed
1. **A universal and powerful runner**:
Xiang Xu's avatar
Xiang Xu committed
   - Supports training different tasks with a small amount of code, e.g., ImageNet can be trained with only 80 lines of code (400 lines of the original PyTorch example).
   - Easily compatible with models from popular algorithm libraries such as TIMM, TorchVision, and Detectron2.
Xin Li's avatar
Xin Li committed
2. **Open architecture with unified interfaces**:
Xin Li's avatar
Xin Li committed
   - Handles different algorithm tasks with unified APIs, e.g., implement a method and apply it to all compatible models.
   - Provides a unified abstraction for upper-level algorithm libraries, which supports various back-end devices such as Nvidia CUDA, Mac MPS, AMD, MLU, and more for model training.
Xin Li's avatar
Xin Li committed
3. **Customizable training process**:
Xin Li's avatar
Xin Li committed
   - Defines the training process just like playing with Legos.
   - Provides rich components and strategies.
   - Complete controls on the training process with different levels of APIs.
Mashiro's avatar
Mashiro committed
## What's New

Mashiro's avatar
Mashiro committed
v0.7.0 was released on 2023-03-16.
Mashiro's avatar
Mashiro committed
Highlights:

Mashiro's avatar
Mashiro committed
- Support PyTorch 2.0! Accelerate training by compiling models. See the tutorial [Model Compilation](https://mmengine.readthedocs.io/en/latest/common_usage/speed_up_training.html#model-compilation) for details
- Add `EarlyStoppingHook` to stop training when the metric does not improve
Mashiro's avatar
Mashiro committed
Read [Changelog](./docs/en/notes/changelog.md#v070-03162023) for more details.
Zaida Zhou's avatar
Zaida Zhou committed
## Installation

Before installing MMEngine, please ensure that PyTorch has been successfully installed following the [official guide](https://pytorch.org/get-started/locally/).
Zaida Zhou's avatar
Zaida Zhou committed

Install MMEngine

```bash
pip install -U openmim
mim install mmengine
```

Verify the installation

```bash
python -c 'from mmengine.utils.dl_utils import collect_env;print(collect_env())'
```

## Get Started

Xin Li's avatar
Xin Li committed
Taking the training of a ResNet-50 model on the CIFAR-10 dataset as an example, we will use MMEngine to build a complete, configurable training and validation process in less than 80 lines of code.
Zaida Zhou's avatar
Zaida Zhou committed

<details>
<summary>Build Models</summary>

Xin Li's avatar
Xin Li committed
First, we need to define a **model** which 1) inherits from `BaseModel` and 2) accepts an additional argument `mode` in the `forward` method, in addition to those arguments related to the dataset.

Xiang Xu's avatar
Xiang Xu committed
- During training, the value of `mode` is "loss", and the `forward` method should return a `dict` containing the key "loss".
Xin Li's avatar
Xin Li committed
- During validation, the value of `mode` is "predict", and the forward method should return results containing both predictions and labels.
Zaida Zhou's avatar
Zaida Zhou committed

```python
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels, mode):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels
```

</details>

<details>
<summary>Build Datasets</summary>

Xin Li's avatar
Xin Li committed
Next, we need to create **Dataset**s and **DataLoader**s for training and validation.
Zaida Zhou's avatar
Zaida Zhou committed
In this case, we simply use built-in datasets supported in TorchVision.

```python
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
                              shuffle=True,
                              dataset=torchvision.datasets.CIFAR10(
                                  'data/cifar10',
                                  train=True,
                                  download=True,
                                  transform=transforms.Compose([
                                      transforms.RandomCrop(32, padding=4),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize(**norm_cfg)
                                  ])))
val_dataloader = DataLoader(batch_size=32,
                            shuffle=False,
                            dataset=torchvision.datasets.CIFAR10(
                                'data/cifar10',
                                train=False,
                                download=True,
                                transform=transforms.Compose([
                                    transforms.ToTensor(),
                                    transforms.Normalize(**norm_cfg)
                                ])))
```

</details>

<details>
<summary>Build Metrics</summary>

Mashiro's avatar
Mashiro committed
To validate and test the model, we need to define a **Metric** called accuracy to evaluate the model. This metric needs to inherit from `BaseMetric` and implements the `process` and `compute_metrics` methods.
Zaida Zhou's avatar
Zaida Zhou committed

```python
from mmengine.evaluator import BaseMetric

class Accuracy(BaseMetric):
    def process(self, data_batch, data_samples):
        score, gt = data_samples
        # Save the results of a batch to `self.results`
        self.results.append({
            'batch_size': len(gt),
            'correct': (score.argmax(dim=1) == gt).sum().cpu(),
        })
    def compute_metrics(self, results):
        total_correct = sum(item['correct'] for item in results)
        total_size = sum(item['batch_size'] for item in results)
        # Returns a dictionary with the results of the evaluated metrics,
        # where the key is the name of the metric
        return dict(accuracy=100 * total_correct / total_size)
```

</details>

<details>
<summary>Build a Runner</summary>

Xin Li's avatar
Xin Li committed
Finally, we can construct a **Runner** with previously defined `Model`, `DataLoader`, and `Metrics`, with some other configs, as shown below.
Zaida Zhou's avatar
Zaida Zhou committed

```python
from torch.optim import SGD
from mmengine.runner import Runner

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
Xiang Xu's avatar
Xiang Xu committed
    # a wrapper to execute back propagation and gradient update, etc.
Zaida Zhou's avatar
Zaida Zhou committed
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    # set some training configs like epochs
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
)
```

</details>

<details>
<summary>Launch Training</summary>

```python
runner.train()
```

</details>

## Learn More

<details>
<summary>Tutorials</summary>

- [Runner](https://mmengine.readthedocs.io/en/latest/tutorials/runner.html)
- [Dataset and DataLoader](https://mmengine.readthedocs.io/en/latest/tutorials/dataset.html)
- [Model](https://mmengine.readthedocs.io/en/latest/tutorials/model.html)
- [Evaluation](https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html)
- [OptimWrapper](https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html)
- [Parameter Scheduler](https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html)
- [Hook](https://mmengine.readthedocs.io/en/latest/tutorials/hook.html)

</details>

<details>
<summary>Advanced tutorials</summary>

Xiang Xu's avatar
Xiang Xu committed
- [Registry](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html)
- [Config](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html)
- [BaseDataset](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html)
Xiang Xu's avatar
Xiang Xu committed
- [Data Transform](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_transform.html)
- [Weight Initialization](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html)
- [Visualization](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html)
- [Abstract Data Element](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html)
- [Distribution Communication](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/distributed.html)
- [Logging](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html)
- [File IO](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/fileio.html)
- [Global manager (ManagerMixin)](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/manager_mixin.html)
- [Use modules from other libraries](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/cross_library.html)
Xiang Xu's avatar
Xiang Xu committed
- [Test Time Agumentation](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/test_time_augmentation.html)
<summary>Examples</summary>

- [Train a GAN](https://mmengine.readthedocs.io/en/latest/examples/train_a_gan.html)

</details>

<details>
<summary>Common Usage</summary>

- [Resume Training](https://mmengine.readthedocs.io/en/latest/common_usage/resume_training.html)
- [Speed up Training](https://mmengine.readthedocs.io/en/latest/common_usage/speed_up_training.html)
- [Save Memory on GPU](https://mmengine.readthedocs.io/en/latest/common_usage/save_gpu_memory.html)

</details>

<details>
<summary>Design</summary>

- [Hook](https://mmengine.readthedocs.io/en/latest/design/hook.html)
- [Runner](https://mmengine.readthedocs.io/en/latest/design/runner.html)
- [Evaluation](https://mmengine.readthedocs.io/en/latest/design/evaluation.html)
- [Visualization](https://mmengine.readthedocs.io/en/latest/design/visualization.html)
- [Logging](https://mmengine.readthedocs.io/en/latest/design/logging.html)
Xiang Xu's avatar
Xiang Xu committed
- [Infer](https://mmengine.readthedocs.io/en/latest/design/infer.html)

</details>

<details>
<summary>Migration guide</summary>

- [Migrate Runner from MMCV to MMEngine](https://mmengine.readthedocs.io/en/latest/migration/runner.html)
- [Migrate Hook from MMCV to MMEngine](https://mmengine.readthedocs.io/en/latest/migration/hook.html)
- [Migrate Model from MMCV to MMEngine](https://mmengine.readthedocs.io/en/latest/migration/model.html)
- [Migrate Parameter Scheduler from MMCV to MMEngine](https://mmengine.readthedocs.io/en/latest/migration/param_scheduler.html)
- [Migrate Data Transform to OpenMMLab 2.0](https://mmengine.readthedocs.io/en/latest/migration/transform.html)

</details>

Zaida Zhou's avatar
Zaida Zhou committed
## Contributing

We appreciate all contributions to improve MMEngine. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.

## Citation

If you find this project useful in your research, please consider cite:

```
@article{mmengine2022,
  title   = {{MMEngine}: OpenMMLab Foundational Library for Training Deep Learning Models},
  author  = {MMEngine Contributors},
  howpublished = {\url{https://github.com/open-mmlab/mmengine}},
  year={2022}
}
```

Zaida Zhou's avatar
Zaida Zhou committed
## License

This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
Zaida Zhou's avatar
Zaida Zhou committed
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
Zaida Zhou's avatar
Zaida Zhou committed
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.