Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Modified from
# https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/print_model_statistics.py
from collections import defaultdict
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
from rich.console import Console
from rich.table import Table
from torch import nn
from mmengine.utils import is_tuple_of
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
from .complexity_analysis import (ActivationAnalyzer, FlopAnalyzer,
parameter_count)
def _format_size(x: int, sig_figs: int = 3, hide_zero: bool = False) -> str:
"""Formats an integer for printing in a table or model representation.
Expresses the number in terms of 'kilo', 'mega', etc., using
'K', 'M', etc. as a suffix.
Args:
x (int): The integer to format.
sig_figs (int): The number of significant figures to keep.
Defaults to 3.
hide_zero (bool): If True, x=0 is replaced with an empty string
instead of '0'. Defaults to False.
Returns:
str: The formatted string.
"""
if hide_zero and x == 0:
return ''
def fmt(x: float) -> str:
# use fixed point to avoid scientific notation
return f'{{:.{sig_figs}f}}'.format(x).rstrip('0').rstrip('.')
if abs(x) > 1e14:
return fmt(x / 1e15) + 'P'
if abs(x) > 1e11:
return fmt(x / 1e12) + 'T'
if abs(x) > 1e8:
return fmt(x / 1e9) + 'G'
if abs(x) > 1e5:
return fmt(x / 1e6) + 'M'
if abs(x) > 1e2:
return fmt(x / 1e3) + 'K'
return str(x)
def _pretty_statistics(statistics: Dict[str, Dict[str, int]],
sig_figs: int = 3,
hide_zero: bool = False) -> Dict[str, Dict[str, str]]:
"""Converts numeric statistics to strings with kilo/mega/giga/etc. labels.
Args:
statistics (dict[str, dict[str, int]]) : the statistics to
format. Organized as a dictionary over modules, which are
each a dictionary over statistic types.
sig_figs (int): the number of significant figures for each stat.
Defaults to 3.
hide_zero (bool): if True, statistics that are zero will be
written as an empty string. Defaults to False.
Returns:
dict[str, dict[str, str]]: the input statistics as pretty strings
"""
out_stats = {}
for mod, stats in statistics.items():
out_stats[mod] = {
s: _format_size(val, sig_figs, hide_zero)
for s, val in stats.items()
}
return out_stats
def _group_by_module(
statistics: Dict[str, Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""Converts statistics organized first by statistic type and then by module
to statistics organized first by module and then by statistic type.
Args:
statistics (dict[str, dict[str, any]]): the statistics to convert
Returns:
dict[str, dict[str, any]]: the reorganized statistics
"""
out_stats = defaultdict(dict) # type: Dict[str, Dict[str, Any]]
for stat_name, stat in statistics.items():
for mod, val in stat.items():
out_stats[mod][stat_name] = val
return dict(out_stats)
def _indicate_uncalled_modules(
statistics: Dict[str, Dict[str, str]],
stat_name: str,
uncalled_modules: Set[str],
uncalled_indicator: str = 'N/A',
) -> Dict[str, Dict[str, str]]:
"""If a module is in the set of uncalled modules, replace its statistics
with the specified indicator, instead of using the existing string.
Assumes the statistic is already formatting in string form.
Args:
statistics (dict[str, dict[str, str]]): the statistics to
format. Organized as a dictionary over modules, which are
each a dictionary over statistic types. Expects statistics
have already been converted to strings.
stat_name (str): the name of the statistic being modified
uncalled_modules set(str): a set of names of uncalled modules.
indicator (str): the string that will be used to indicate
unused modules. Defaults to 'N/A'.
Returns:
dict[str, dict[str, str]]: the modified statistics
"""
stats_out = {mod: stats.copy() for mod, stats in statistics.items()}
for mod in uncalled_modules:
if mod not in stats_out:
stats_out[mod] = {}
stats_out[mod][stat_name] = uncalled_indicator
return stats_out
def _remove_zero_statistics(
statistics: Dict[str, Dict[str, int]],
force_keep: Optional[Set[str]] = None,
require_trivial_children: bool = False,
) -> Dict[str, Dict[str, int]]:
"""Any module that has zero for all available statistics is removed from
the set of statistics.
This can help declutter the reporting of statistics
if many submodules have zero statistics. Assumes the statistics have
a model hierarchy starting with a root that has name ''.
Args:
statistics (dict[str, dict[str, int]]): the statistics to
remove zeros from. Organized as a dictionary over modules,
which are each a dictionary over statistic types.
force_keep (set[str] or None): a set of modules to always keep, even
if they are all zero.
require_trivial_children (bool): If True, a statistic will only
be deleted if all its children are also deleted. Defaults to
False.
Returns:
dict[str, dict[str, int]]: the input statistics dictionary,
with submodules removed if they have zero for all statistics.
"""
out_stats: Dict[str, Dict[str, int]] = {}
_force_keep: Set[str] = force_keep if force_keep else set() | {''}
def keep_stat(name: str) -> None:
prefix = name + ('.' if name else '')
trivial_children = True
for mod in statistics:
# 'if mod' excludes root = '', which is never a child
if mod and mod.count('.') == prefix.count('.') and mod.startswith(
prefix):
keep_stat(mod)
trivial_children &= mod not in out_stats
if ((not all(val == 0 for val in statistics[name].values()))
or (name in _force_keep)
or (require_trivial_children and not trivial_children)):
out_stats[name] = statistics[name].copy()
keep_stat('')
return out_stats
def _fill_missing_statistics(
model: nn.Module,
statistics: Dict[str, Dict[str, int]]) -> Dict[str, Dict[str, int]]:
"""If, for a given submodule name in the model, a statistic is missing from
statistics, fills it in with zero.
This visually uniformizes the reporting of statistics.
Args:
model (nn.Module): the model whose submodule names will be
used to fill in statistics
statistics (dict[str, dict[str, int]]) : the statistics to
fill in missing values for. Organized as a dictionary
over statistics, which are each a dictionary over submodules'
names. The statistics are assumed to be formatted already
to the desired string format for printing.
Returns:
dict[str, dict[str, int]]: the input statistics with missing
values filled with zero.
"""
out_stats = {name: stat.copy() for name, stat in statistics.items()}
for mod_name, _ in model.named_modules():
for stat in out_stats.values():
if mod_name not in stat:
stat[mod_name] = 0
return out_stats
def _model_stats_str(model: nn.Module,
statistics: Dict[str, Dict[str, str]]) -> str:
"""This produces a representation of the model much like 'str(model)'
would, except the provided statistics are written out as additional
information for each submodule.
Args:
model (nn.Module): the model to form a representation of.
statistics (dict[str, dict[str, str]]): the statistics to
include in the model representations. Organized as a dictionary
over module names, which are each a dictionary over statistics.
The statistics are assumed to be formatted already to the
desired string format for printing.
Returns:
str: the string representation of the model with the statistics
inserted.
"""
# Copied from nn.Module._addindent
def _addindent(s_: str, numSpaces: int) -> str:
s = s_.split('\n')
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * ' ') + line for line in s]
s = '\n'.join(s) # type: ignore
s = first + '\n' + s # type: ignore
return s # type: ignore
def print_statistics(name: str) -> str:
if name not in statistics:
return ''
printed_stats = [f'{k}: {v}' for k, v in statistics[name].items()]
return ', '.join(printed_stats)
# This comes directly from nn.Module.__repr__ with small changes
# to include the statistics.
def repr_with_statistics(module: nn.Module, name: str) -> str:
# We treat the extra repr like the sub-module, one item per line
extra_lines = []
extra_repr = module.extra_repr()
printed_stats = print_statistics(name)
# empty string will be split into list ['']
if extra_repr:
extra_lines.extend(extra_repr.split('\n'))
if printed_stats:
extra_lines.extend(printed_stats.split('\n'))
child_lines = []
for key, submod in module._modules.items():
submod_name = name + ('.' if name else '') + key
# pyre-fixme[6]: Expected `Module` for 1st param but got
# `Optional[nn.modules.module.Module]`.
submod_str = repr_with_statistics(submod, submod_name)
submod_str = _addindent(submod_str, 2)
child_lines.append('(' + key + '): ' + submod_str)
lines = extra_lines + child_lines
main_str = module._get_name() + '('
if lines:
# simple one-liner info, which most builtin Modules will use
if len(extra_lines) == 1 and not child_lines:
main_str += extra_lines[0]
else:
main_str += '\n ' + '\n '.join(lines) + '\n'
main_str += ')'
return main_str
return repr_with_statistics(model, '')
def _get_input_sizes(iterable: Iterable[Any]) -> List[Any]: # type: ignore
"""Gets the sizes of all torch tensors in an iterable.
If an element of the iterable is a non-torch tensor iterable, it recurses
into that iterable to continue calculating sizes. Any non-iterable is given
a size of None. The output consists of nested lists with the same nesting
structure as the input iterables.
"""
out_list = []
for i in iterable:
if isinstance(i, torch.Tensor):
out_list.append(list(i.size()))
elif isinstance(i, Iterable):
sublist_sizes = _get_input_sizes(i)
if all(j is None for j in sublist_sizes):
out_list.append(None) # type: ignore
else:
out_list.append(sublist_sizes)
else:
out_list.append(None) # type: ignore
return out_list
def _get_single_child(name: str,
statistics: Dict[str, Dict[str, str]]) -> Optional[str]:
"""If the given module has only a single child in statistics, return it.
Otherwise, return None.
"""
prefix = name + ('.' if name else '')
child = None
for mod in statistics:
# 'if mod' excludes root = '', which is never a child
if mod and mod.count('.') == prefix.count('.') and mod.startswith(
prefix):
if child is None:
child = mod
else:
return None # We found a second child, so return None
return child
def _try_combine(stats1: Dict[str, str],
stats2: Dict[str, str]) -> Optional[Dict[str, str]]:
"""Try combine two statistics dict to display in one row.
If they conflict, returns None.
"""
ret = {}
if set(stats1.keys()) != set(stats2.keys()):
return None
for k, v1 in stats1.items():
v2 = stats2[k]
if v1 != v2 and len(v1) and len(v2):
return None
ret[k] = v1 if len(v1) else v2
return ret
def _fastforward(
name: str,
statistics: Dict[str, Dict[str, str]]) -> Tuple[str, Dict[str, str]]:
"""If the given module has only a single child and matches statistics with
that child, merge statistics and their names into one row.
Then repeat until the condition isn't met.
Returns:
tuple[str, dict]: the new name and the combined statistics of this row
"""
single_child = _get_single_child(name, statistics)
if single_child is None:
return name, statistics[name]
combined = _try_combine(statistics[name], statistics[single_child])
if combined is None:
return name, statistics[name]
statistics[single_child] = combined
return _fastforward(single_child, statistics)
def _stats_table_format(
statistics: Dict[str, Dict[str, str]],
max_depth: int = 3,
stat_columns: Optional[List[str]] = None,
) -> str:
"""Formats the statistics obtained from a model in a nice table.
Args:
statistics (dict[str, dict[str, str]]): The statistics to print.
Organized as a dictionary over modules, then as a dictionary
over statistics in the model. The statistics are assumed to
already be formatted for printing.
max_depth (int): The maximum submodule depth to recurse to.
Defaults to 3.
stat_columns (list[str]): Specify the order of the columns to print.
If None, columns are found automatically from the provided
statistics. Defaults to None.
Return:
str: The formatted table.
"""
if stat_columns is None:
stat_columns = set() # type: ignore
for stats in statistics.values():
stat_columns.update(stats.keys()) # type: ignore
stat_columns = list(stat_columns) # type: ignore
headers = ['module'] + stat_columns
rows: List[List[str]] = []
def build_row(name: str, stats: Dict[str, str],
indent_lvl: int) -> List[str]:
indent = ' ' * indent_lvl
row = [indent + name]
for stat_name in stat_columns: # type: ignore
row_str = (indent + stats[stat_name]) if stat_name in stats else ''
row.append(row_str)
return row
def fill(indent_lvl: int, prefix: str) -> None:
if indent_lvl > max_depth:
return
for mod_name in statistics:
# 'if mod' excludes root = '', which is never a child
if (mod_name and mod_name.count('.') == prefix.count('.')
and mod_name.startswith(prefix)):
mod_name, curr_stats = _fastforward(mod_name, statistics)
if root_prefix and mod_name.startswith(root_prefix):
# Skip the root_prefix shared by all submodules as it
# carries 0 information
pretty_mod_name = mod_name[len(root_prefix):]
else:
pretty_mod_name = mod_name
row = build_row(pretty_mod_name, curr_stats, indent_lvl)
rows.append(row)
fill(indent_lvl + 1, mod_name + '.')
root_name, curr_stats = _fastforward('', statistics)
row = build_row(root_name or 'model', curr_stats, indent_lvl=0)
rows.append(row)
root_prefix = root_name + ('.' if root_name else '')
fill(indent_lvl=1, prefix=root_prefix)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
for header in headers:
table.add_column(header)
for row in rows:
table.add_row(*row)
console = Console()
with console.capture() as capture:
console.print(table, end='')
return capture.get()
def complexity_stats_str(
flops: FlopAnalyzer,
activations: Optional[ActivationAnalyzer] = None) -> str:
"""Calculates the parameters and flops of the model with the given inputs
and returns a string representation of the model that includes the
parameters and flops of every submodule. The string is structured to be
similar that given by str(model), though it is not guaranteed to be
identical in form if the default string representation of a module has been
overridden. If a module has zero parameters and flops, statistics will not
be reported for succinctness. The trace can only register the scope of a
module if it is called directly, which means flops (and activations)
arising from explicit calls to .forward() or to other python functions of
the module will not be attributed to that module. Modules that are never
called will have 'N/A' listed for their flops; this means they are either
unused or their statistics are missing for this reason. Any such flops are
still counted towards the parent.
Examples:
>>> import torch
>>> import torch.nn as nn
>>> class InnerNet(nn.Module):
... def __init__(self):
... super().__init__()
... self.fc1 = nn.Linear(10,10)
... self.fc2 = nn.Linear(10,10)
... def forward(self, x):
... return self.fc1(self.fc2(x))
>>> class TestNet(nn.Module):
... def __init__(self):
... super().__init__()
... self.fc1 = nn.Linear(10,10)
... self.fc2 = nn.Linear(10,10)
... self.inner = InnerNet()
... def forward(self, x):
... return self.fc1(self.fc2(self.inner(x)))
>>> inputs = torch.randn((1,10))
>>> print(complexity_stats_str(FlopAnalyzer(model, inputs)))
TestNet(
#params: 0.44K, #flops: 0.4K
(fc1): Linear(
in_features=10, out_features=10, bias=True
#params: 0.11K, #flops: 100
)
(fc2): Linear(
in_features=10, out_features=10, bias=True
#params: 0.11K, #flops: 100
)
(inner): InnerNet(
#params: 0.22K, #flops: 0.2K
(fc1): Linear(
in_features=10, out_features=10, bias=True
#params: 0.11K, #flops: 100
)
(fc2): Linear(
in_features=10, out_features=10, bias=True
#params: 0.11K, #flops: 100
)
)
)
Args:
flops (FlopAnalyzer): the flop counting object
activations (ActivationAnalyzer or None): If given, the activations of
each layer will also be calculated and included in the
representation. Defaults to None.
Returns:
str: a string representation of the model with the number of
parameters and flops included.
"""
# cast to dict since pyre doesn't like the implicit defaultdict->dict
model = flops._model
params = dict(parameter_count(model))
flops.unsupported_ops_warnings(False)
flops.uncalled_modules_warnings(False)
flops.tracer_warnings('none')
stats = {'#params': params, '#flops': flops.by_module()}
if activations is not None:
activations.unsupported_ops_warnings(False)
activations.uncalled_modules_warnings(False)
activations.tracer_warnings('none')
stats['#acts'] = activations.by_module()
all_uncalled = flops.uncalled_modules() | (
activations.uncalled_modules() if activations is not None else set())
stats = _fill_missing_statistics(model, stats)
stats = _group_by_module(stats)
stats = _remove_zero_statistics(stats, force_keep=all_uncalled)
stats = _pretty_statistics(stats, sig_figs=2) # type: ignore
stats = _indicate_uncalled_modules( # type: ignore
stats, # type: ignore
'#flops', # type: ignore
flops.uncalled_modules()) # type: ignore
if activations is not None:
stats = _indicate_uncalled_modules( # type: ignore
stats, # type: ignore
'#acts', # type: ignore
activations.uncalled_modules()) # type: ignore
model_string = ''
if all_uncalled:
model_string += (
'N/A indicates a possibly missing statistic due to how '
'the module was called. Missing values are still included '
"in the parent's total.\n")
model_string += _model_stats_str(model, stats) # type: ignore
return model_string
def complexity_stats_table(
flops: FlopAnalyzer,
max_depth: int = 3,
activations: Optional[ActivationAnalyzer] = None,
show_param_shapes: bool = True,
) -> str:
"""
Format the per-module parameters and flops of a model in a table.
It looks like this:
::
| model | #parameters or shape| #flops |
|:---------------------------------|:--------------------|:----------|
| model | 34.6M | 65.7G |
| s1 | 15.4K | 4.32G |
| s1.pathway0_stem | 9.54K | 1.23G |
| s1.pathway0_stem.conv | 9.41K | 1.23G |
| s1.pathway0_stem.bn | 0.128K | |
| s1.pathway1_stem | 5.9K | 3.08G |
| s1.pathway1_stem.conv | 5.88K | 3.08G |
| s1.pathway1_stem.bn | 16 | |
| s1_fuse | 0.928K | 29.4M |
| s1_fuse.conv_f2s | 0.896K | 29.4M |
| s1_fuse.conv_f2s.weight | (16, 8, 7, 1, 1) | |
| s1_fuse.bn | 32 | |
| s1_fuse.bn.weight | (16,) | |
| s1_fuse.bn.bias | (16,) | |
| s2 | 0.226M | 7.73G |
| s2.pathway0_res0 | 80.1K | 2.58G |
| s2.pathway0_res0.branch1 | 20.5K | 0.671G |
| s2.pathway0_res0.branch1_bn | 0.512K | |
| s2.pathway0_res0.branch2 | 59.1K | 1.91G |
| s2.pathway0_res1.branch2 | 70.4K | 2.28G |
| s2.pathway0_res1.branch2.a | 16.4K | 0.537G |
| s2.pathway0_res1.branch2.a_bn | 0.128K | |
| s2.pathway0_res1.branch2.b | 36.9K | 1.21G |
| s2.pathway0_res1.branch2.b_bn | 0.128K | |
| s2.pathway0_res1.branch2.c | 16.4K | 0.537G |
| s2.pathway0_res1.branch2.c_bn | 0.512K | |
| s2.pathway0_res2.branch2 | 70.4K | 2.28G |
| s2.pathway0_res2.branch2.a | 16.4K | 0.537G |
| s2.pathway0_res2.branch2.a_bn | 0.128K | |
| s2.pathway0_res2.branch2.b | 36.9K | 1.21G |
| s2.pathway0_res2.branch2.b_bn | 0.128K | |
| s2.pathway0_res2.branch2.c | 16.4K | 0.537G |
| s2.pathway0_res2.branch2.c_bn | 0.512K | |
| ............................. | ...... | ...... |
Args:
flops (FlopAnalyzer): the flop counting object
max_depth (int): The max depth of submodules to include in the
table. Defaults to 3.
activations (ActivationAnalyzer or None): If given, include
activation counts as an additional column in the table.
Defaults to None.
show_param_shapes (bool): If true, shapes for parameters will be
included in the table. Defaults to True.
Returns:
str: The formatted table.
Examples:
>>> print(complexity_stats_table(FlopAnalyzer(model, inputs)))
"""
params_header = '#parameters' + (' or shape' if show_param_shapes else '')
flops_header, acts_header = '#flops', '#activations'
model = flops._model
# cast to dict since pyre doesn't like the implicit defaultdict->dict
params = dict(parameter_count(model))
flops.unsupported_ops_warnings(False)
flops.uncalled_modules_warnings(False)
flops.tracer_warnings('none')
stats = {params_header: params, flops_header: flops.by_module()}
stat_columns = [params_header, flops_header]
if activations is not None:
activations.unsupported_ops_warnings(False)
activations.uncalled_modules_warnings(False)
activations.tracer_warnings('none')
stats[acts_header] = activations.by_module()
stat_columns += [acts_header]
stats = _group_by_module(stats)
stats = _remove_zero_statistics(
stats, # type: ignore
require_trivial_children=True) # type: ignore
stats = _pretty_statistics(stats, hide_zero=False) # type: ignore
stats = _indicate_uncalled_modules( # type: ignore
stats, # type: ignore
flops_header, # type: ignore
flops.uncalled_modules() & stats.keys(), # type: ignore
uncalled_indicator='', # type: ignore
)
if activations:
stats = _indicate_uncalled_modules( # type: ignore
stats, # type: ignore
acts_header, # type: ignore
activations.uncalled_modules() & stats.keys(), # type: ignore
uncalled_indicator='', # type: ignore
)
# Swap in shapes for parameters or delete shapes from dict
param_shapes: Dict[str, Tuple[int, ...]] = {
k: tuple(v.shape)
for k, v in model.named_parameters()
}
to_delete = []
for mod in stats:
if mod in param_shapes:
if show_param_shapes:
stats[mod][params_header] = str( # type: ignore
param_shapes[mod]) # type: ignore
else:
to_delete.append(mod)
for mod in to_delete:
del stats[mod]
return _stats_table_format(
statistics=stats, # type: ignore
max_depth=max_depth,
stat_columns=stat_columns,
)
def get_model_complexity_info(
model: nn.Module,
input_shape: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...],
None] = None,
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], Tuple[Any, ...],
None] = None,
show_table: bool = True,
show_arch: bool = True,
):
"""Interface to get the complexity of a model.
The parameter `inputs` are fed to the forward method of model.
If `inputs` is not specified, the `input_shape` is required and
it will be used to construct the dummy input fed to model.
If the forward of model requires two or more inputs, the `inputs`
should be a tuple of tensor or the `input_shape` should be a tuple
of tuple which each element will be constructed into a dumpy input.
Examples:
>>> # the forward of model accepts only one input
>>> input_shape = (3, 224, 224)
>>> get_model_complexity_info(model, input_shape=input_shape)
>>> # the forward of model accepts two or more inputs
>>> input_shape = ((3, 224, 224), (3, 10))
>>> get_model_complexity_info(model, input_shape=input_shape)
Args:
model (nn.Module): The model to analyze.
input_shape (Union[Tuple[int, ...], Tuple[Tuple[int, ...]], None]):
The input shape of the model.
If "inputs" is not specified, the "input_shape" should be set.
Defaults to None.
inputs (torch.Tensor, tuple[torch.Tensor, ...] or Tuple[Any, ...],\
optional]):
The input tensor(s) of the model. If not given the input tensor
will be generated automatically with the given input_shape.
Defaults to None.
show_table (bool): Whether to show the complexity table.
Defaults to True.
show_arch (bool): Whether to show the complexity arch.
Defaults to True.
Returns:
dict: The complexity information of the model.
"""
if input_shape is None and inputs is None:
raise ValueError('One of "input_shape" and "inputs" should be set.')
elif input_shape is not None and inputs is not None:
raise ValueError('"input_shape" and "inputs" cannot be both set.')
if inputs is None:
if is_tuple_of(input_shape, int): # tuple of int, construct one tensor
inputs = (torch.randn(1, *input_shape), )
elif is_tuple_of(input_shape, tuple) and all([
is_tuple_of(one_input_shape, int)
for one_input_shape in input_shape # type: ignore
]): # tuple of tuple of int, construct multiple tensors
inputs = tuple([
torch.randn(1, *one_input_shape)
for one_input_shape in input_shape # type: ignore
])
else:
raise ValueError(
'"input_shape" should be either a `tuple of int` (to construct'
'one input tensor) or a `tuple of tuple of int` (to construct'
'multiple input tensors).')
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
flop_handler = FlopAnalyzer(model, inputs)
activation_handler = ActivationAnalyzer(model, inputs)
flops = flop_handler.total()
activations = activation_handler.total()
params = parameter_count(model)['']
flops_str = _format_size(flops)
activations_str = _format_size(activations)
params_str = _format_size(params)
if show_table:
complexity_table = complexity_stats_table(
flops=flop_handler,
activations=activation_handler,
show_param_shapes=True,
)
complexity_table = '\n' + complexity_table
else:
complexity_table = ''
if show_arch:
complexity_arch = complexity_stats_str(
flops=flop_handler,
activations=activation_handler,
)
complexity_arch = '\n' + complexity_arch
else:
complexity_arch = ''
return {
'flops': flops,
'flops_str': flops_str,
'activations': activations,
'activations_str': activations_str,
'params': params,
'params_str': params_str,
'out_table': complexity_table,
'out_arch': complexity_arch
}