Skip to content
Snippets Groups Projects
Unverified Commit 08602a23 authored by LeoXing1996's avatar LeoXing1996 Committed by GitHub
Browse files

[Enhancement] Support save best based on multi metrics (#349)

* support save best based on multi metrics

* add unit test

* resolve bugs after rebasing

* revise docstring

* revise docstring

* fix as comment

* revise as comment
parent 6ebb7ed4
No related branches found
No related tags found
No related merge requests found
...@@ -4,12 +4,13 @@ import warnings ...@@ -4,12 +4,13 @@ import warnings
from collections import OrderedDict from collections import OrderedDict
from math import inf from math import inf
from pathlib import Path from pathlib import Path
from typing import Optional, Sequence, Union from typing import Callable, Dict, List, Optional, Sequence, Union
from mmengine.dist import master_only from mmengine.dist import master_only
from mmengine.fileio import FileClient from mmengine.fileio import FileClient
from mmengine.registry import HOOKS from mmengine.registry import HOOKS
from mmengine.utils import is_seq_of from mmengine.utils import is_seq_of
from mmengine.utils.misc import is_list_of
from .hook import Hook from .hook import Hook
DATA_BATCH = Optional[Sequence[dict]] DATA_BATCH = Optional[Sequence[dict]]
...@@ -44,20 +45,27 @@ class CheckpointHook(Hook): ...@@ -44,20 +45,27 @@ class CheckpointHook(Hook):
Defaults to -1, which means unlimited. Defaults to -1, which means unlimited.
save_last (bool): Whether to force the last checkpoint to be save_last (bool): Whether to force the last checkpoint to be
saved regardless of interval. Defaults to True. saved regardless of interval. Defaults to True.
save_best (str, optional): If a metric is specified, it would measure save_best (str, List[str], optional): If a metric is specified, it
the best checkpoint during evaluation. The information about best would measure the best checkpoint during evaluation. If a list of
checkpoint would be saved in ``runner.message_hub`` to keep metrics is passed, it would measure a group of best checkpoints
corresponding to the passed metrics. The information about best
checkpoint(s) would be saved in ``runner.message_hub`` to keep
best score value and best checkpoint path, which will be also best score value and best checkpoint path, which will be also
loaded when resuming checkpoint. Options are the evaluation metrics loaded when resuming checkpoint. Options are the evaluation metrics
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
detection and instance segmentation. ``AR@100`` for proposal detection and instance segmentation. ``AR@100`` for proposal
recall. If ``save_best`` is ``auto``, the first key of the returned recall. If ``save_best`` is ``auto``, the first key of the returned
``OrderedDict`` result will be used. Defaults to None. ``OrderedDict`` result will be used. Defaults to None.
rule (str, optional): Comparison rule for best score. If set to rule (str, List[str], optional): Comparison rule for best score. If
None, it will infer a reasonable rule. Keys such as 'acc', 'top' set to None, it will infer a reasonable rule. Keys such as 'acc',
.etc will be inferred by 'greater' rule. Keys contain 'loss' will 'top' .etc will be inferred by 'greater' rule. Keys contain 'loss'
be inferred by 'less' rule. Options are 'greater', 'less', None. will be inferred by 'less' rule. If ``save_best`` is a list of
Defaults to None. metrics and ``rule`` is a str, all metrics in ``save_best`` will
share the comparison rule. If ``save_best`` and ``rule`` are both
lists, their length must be the same, and metrics in ``save_best``
will use the corresponding comparison rule in ``rule``. Options
are 'greater', 'less', None and list which contains 'greater' and
'less'. Defaults to None.
greater_keys (List[str], optional): Metric keys that will be greater_keys (List[str], optional): Metric keys that will be
inferred by 'greater' comparison rule. If ``None``, inferred by 'greater' comparison rule. If ``None``,
_default_greater_keys will be used. Defaults to None. _default_greater_keys will be used. Defaults to None.
...@@ -67,6 +75,17 @@ class CheckpointHook(Hook): ...@@ -67,6 +75,17 @@ class CheckpointHook(Hook):
file_client_args (dict, optional): Arguments to instantiate a file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmcv.fileio.FileClient` for details. FileClient. See :class:`mmcv.fileio.FileClient` for details.
Defaults to None. Defaults to None.
Examples:
>>> # Save best based on single metric
>>> CheckpointHook(interval=2, by_epoch=True, save_best='acc',
>>> rule='less')
>>> # Save best based on multi metrics with the same comparison rule
>>> CheckpointHook(interval=2, by_epoch=True,
>>> save_best=['acc', 'mIoU'], rule='greater')
>>> # Save best based on multi metrics with different comparison rule
>>> CheckpointHook(interval=2, by_epoch=True,
>>> save_best=['FID', 'IS'], rule=['less', 'greater'])
""" """
out_dir: str out_dir: str
...@@ -93,8 +112,8 @@ class CheckpointHook(Hook): ...@@ -93,8 +112,8 @@ class CheckpointHook(Hook):
out_dir: Optional[Union[str, Path]] = None, out_dir: Optional[Union[str, Path]] = None,
max_keep_ckpts: int = -1, max_keep_ckpts: int = -1,
save_last: bool = True, save_last: bool = True,
save_best: Optional[str] = None, save_best: Union[str, List[str], None] = None,
rule: Optional[str] = None, rule: Union[str, List[str], None] = None,
greater_keys: Optional[Sequence[str]] = None, greater_keys: Optional[Sequence[str]] = None,
less_keys: Optional[Sequence[str]] = None, less_keys: Optional[Sequence[str]] = None,
file_client_args: Optional[dict] = None, file_client_args: Optional[dict] = None,
...@@ -110,11 +129,39 @@ class CheckpointHook(Hook): ...@@ -110,11 +129,39 @@ class CheckpointHook(Hook):
self.file_client_args = file_client_args self.file_client_args = file_client_args
# save best logic # save best logic
assert isinstance(save_best, str) or save_best is None, \ assert (isinstance(save_best, str) or is_list_of(save_best, str)
'"save_best" should be a str or None ' \ or (save_best is None)), (
f'rather than {type(save_best)}' '"save_best" should be a str or list of str or None, '
f'but got {type(save_best)}')
if isinstance(save_best, list):
if 'auto' in save_best:
assert len(save_best) == 1, (
'Only support one "auto" in "save_best" list.')
assert len(save_best) == len(
set(save_best)), ('Find duplicate element in "save_best".')
else:
# convert str to list[str]
if save_best is not None:
save_best = [save_best] # type: ignore # noqa: F401
self.save_best = save_best self.save_best = save_best
# rule logic
assert (isinstance(rule, str) or is_list_of(rule, str)
or (rule is None)), (
'"rule" should be a str or list of str or None, '
f'but got {type(rule)}')
if isinstance(rule, list):
# check the length of rule list
assert len(rule) in [
1,
len(self.save_best) # type: ignore
], ('Number of "rule" must be 1 or the same as number of '
f'"save_best", but got {len(rule)}.')
else:
# convert str/None to list
rule = [rule] # type: ignore # noqa: F401
if greater_keys is None: if greater_keys is None:
self.greater_keys = self._default_greater_keys self.greater_keys = self._default_greater_keys
else: else:
...@@ -132,8 +179,12 @@ class CheckpointHook(Hook): ...@@ -132,8 +179,12 @@ class CheckpointHook(Hook):
self.less_keys = less_keys # type: ignore self.less_keys = less_keys # type: ignore
if self.save_best is not None: if self.save_best is not None:
self.best_ckpt_path = None self.is_better_than: Dict[str, Callable] = dict()
self._init_rule(rule, self.save_best) self._init_rule(rule, self.save_best)
if len(self.key_indicators) == 1:
self.best_ckpt_path: Optional[str] = None
else:
self.best_ckpt_path_dict: Dict = dict()
def before_train(self, runner) -> None: def before_train(self, runner) -> None:
"""Finish all operations, related to checkpoint. """Finish all operations, related to checkpoint.
...@@ -162,10 +213,21 @@ class CheckpointHook(Hook): ...@@ -162,10 +213,21 @@ class CheckpointHook(Hook):
f'{self.file_client.name}.') f'{self.file_client.name}.')
if self.save_best is not None: if self.save_best is not None:
if 'best_ckpt' not in runner.message_hub.runtime_info: if len(self.key_indicators) == 1:
self.best_ckpt_path = None if 'best_ckpt' not in runner.message_hub.runtime_info:
self.best_ckpt_path = None
else:
self.best_ckpt_path = runner.message_hub.get_info(
'best_ckpt')
else: else:
self.best_ckpt_path = runner.message_hub.get_info('best_ckpt') for key_indicator in self.key_indicators:
best_ckpt_name = f'best_ckpt_{key_indicator}'
if best_ckpt_name not in runner.message_hub.runtime_info:
self.best_ckpt_path_dict[key_indicator] = None
else:
self.best_ckpt_path_dict[
key_indicator] = runner.message_hub.get_info(
best_ckpt_name)
def after_train_epoch(self, runner) -> None: def after_train_epoch(self, runner) -> None:
"""Save the checkpoint and synchronize buffers after each epoch. """Save the checkpoint and synchronize buffers after each epoch.
...@@ -195,7 +257,7 @@ class CheckpointHook(Hook): ...@@ -195,7 +257,7 @@ class CheckpointHook(Hook):
""" """
self._save_best_checkpoint(runner, metrics) self._save_best_checkpoint(runner, metrics)
def _get_metric_score(self, metrics): def _get_metric_score(self, metrics, key_indicator):
eval_res = OrderedDict() eval_res = OrderedDict()
if metrics is not None: if metrics is not None:
eval_res.update(metrics) eval_res.update(metrics)
...@@ -206,10 +268,7 @@ class CheckpointHook(Hook): ...@@ -206,10 +268,7 @@ class CheckpointHook(Hook):
'the best checkpoint will be skipped in this evaluation.') 'the best checkpoint will be skipped in this evaluation.')
return None return None
if self.key_indicator == 'auto': return eval_res[key_indicator]
self._init_rule(self.rule, list(eval_res.keys())[0])
return eval_res[self.key_indicator]
@master_only @master_only
def _save_checkpoint(self, runner) -> None: def _save_checkpoint(self, runner) -> None:
...@@ -264,6 +323,7 @@ class CheckpointHook(Hook): ...@@ -264,6 +323,7 @@ class CheckpointHook(Hook):
Args: Args:
runner (Runner): The runner of the training process. runner (Runner): The runner of the training process.
metrics (dict): Evaluation results of all metrics.
""" """
if not self.save_best: if not self.save_best:
return return
...@@ -277,91 +337,123 @@ class CheckpointHook(Hook): ...@@ -277,91 +337,123 @@ class CheckpointHook(Hook):
'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1) 'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1)
cur_type, cur_time = 'iter', runner.iter + 1 cur_type, cur_time = 'iter', runner.iter + 1
# handle auto in self.key_indicators and self.rules before the loop
if 'auto' in self.key_indicators:
self._init_rule(self.rules, [list(metrics.keys())[0]])
# save best logic # save best logic
# get score from messagehub # get score from messagehub
# notice `_get_metirc_score` helps to infer for key_indicator, rule in zip(self.key_indicators, self.rules):
# self.rule when self.save_best is `auto` key_score = self._get_metric_score(metrics, key_indicator)
key_score = self._get_metric_score(metrics)
if 'best_score' not in runner.message_hub.runtime_info:
best_score = self.init_value_map[self.rule]
else:
best_score = runner.message_hub.get_info('best_score')
if not key_score or not self.is_better_than(key_score, best_score):
return
best_score = key_score if len(self.key_indicators) == 1:
runner.message_hub.update_info('best_score', best_score) best_score_key = 'best_score'
runtime_best_ckpt_key = 'best_ckpt'
best_ckpt_path = self.best_ckpt_path
else:
best_score_key = f'best_score_{key_indicator}'
runtime_best_ckpt_key = f'best_ckpt_{key_indicator}'
best_ckpt_path = self.best_ckpt_path_dict[key_indicator]
if self.best_ckpt_path and self.file_client.isfile( if best_score_key not in runner.message_hub.runtime_info:
self.best_ckpt_path): best_score = self.init_value_map[rule]
self.file_client.remove(self.best_ckpt_path) else:
best_score = runner.message_hub.get_info(best_score_key)
if key_score is None or not self.is_better_than[key_indicator](
key_score, best_score):
continue
best_score = key_score
runner.message_hub.update_info(best_score_key, best_score)
if best_ckpt_path and self.file_client.isfile(best_ckpt_path):
self.file_client.remove(best_ckpt_path)
runner.logger.info(
f'The previous best checkpoint {best_ckpt_path} '
'is removed')
best_ckpt_name = f'best_{key_indicator}_{ckpt_filename}'
if len(self.key_indicators) == 1:
self.best_ckpt_path = self.file_client.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info(runtime_best_ckpt_key,
self.best_ckpt_path)
else:
self.best_ckpt_path_dict[
key_indicator] = self.file_client.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info(
runtime_best_ckpt_key,
self.best_ckpt_path_dict[key_indicator])
runner.save_checkpoint(
self.out_dir,
filename=best_ckpt_name,
file_client_args=self.file_client_args,
save_optimizer=False,
save_param_scheduler=False,
by_epoch=False)
runner.logger.info( runner.logger.info(
f'The previous best checkpoint {self.best_ckpt_path} ' f'The best checkpoint with {best_score:0.4f} {key_indicator} '
'is removed') f'at {cur_time} {cur_type} is saved to {best_ckpt_name}.')
def _init_rule(self, rules, key_indicators) -> None:
"""Initialize rule, key_indicator, comparison_func, and best score. If
key_indicator is a list of string and rule is a string, all metric in
the key_indicator will share the same rule.
best_ckpt_name = f'best_{self.key_indicator}_{ckpt_filename}'
self.best_ckpt_path = self.file_client.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info('best_ckpt', self.best_ckpt_path)
runner.save_checkpoint(
self.out_dir,
filename=best_ckpt_name,
file_client_args=self.file_client_args,
save_optimizer=False,
save_param_scheduler=False,
by_epoch=False)
runner.logger.info(
f'The best checkpoint with {best_score:0.4f} {self.key_indicator} '
f'at {cur_time} {cur_type} is saved to {best_ckpt_name}.')
def _init_rule(self, rule, key_indicator) -> None:
"""Initialize rule, key_indicator, comparison_func, and best score.
Here is the rule to determine which rule is used for key indicator when Here is the rule to determine which rule is used for key indicator when
the rule is not specific (note that the key indicator matching is case- the rule is not specific (note that the key indicator matching is case-
insensitive): insensitive):
1. If the key indicator is in ``self.greater_keys``, the rule will be 1. If the key indicator is in ``self.greater_keys``, the rule
specified as 'greater'. will be specified as 'greater'.
2. Or if the key indicator is in ``self.less_keys``, the rule will be 2. Or if the key indicator is in ``self.less_keys``, the rule
specified as 'less'. will be specified as 'less'.
3. Or if any one item in ``self.greater_keys`` is a substring of 3. Or if any one item in ``self.greater_keys`` is a substring of
key_indicator , the rule will be specified as 'greater'. key_indicator, the rule will be specified as 'greater'.
4. Or if any one item in ``self.less_keys`` is a substring of 4. Or if any one item in ``self.less_keys`` is a substring of
key_indicator , the rule will be specified as 'less'. key_indicator, the rule will be specified as 'less'.
Args: Args:
rule (str | None): Comparison rule for best score. rule (List[Optional[str]]): Comparison rule for best score.
key_indicator (str | None): Key indicator to determine the key_indicator (List[str]): Key indicator to determine
comparison rule. the comparison rule.
""" """
if len(rules) == 1:
if rule not in self.rule_map and rule is not None: rules = rules * len(key_indicators)
raise KeyError('rule must be greater, less or None, '
f'but got {rule}.') self.rules = []
for rule, key_indicator in zip(rules, key_indicators):
if rule is None and key_indicator != 'auto':
# `_lc` here means we use the lower case of keys for if rule not in self.rule_map and rule is not None:
# case-insensitive matching raise KeyError('rule must be greater, less or None, '
key_indicator_lc = key_indicator.lower() f'but got {rule}.')
greater_keys = [key.lower() for key in self.greater_keys]
less_keys = [key.lower() for key in self.less_keys] if rule is None and key_indicator != 'auto':
# `_lc` here means we use the lower case of keys for
if key_indicator_lc in greater_keys: # case-insensitive matching
rule = 'greater' key_indicator_lc = key_indicator.lower()
elif key_indicator_lc in less_keys: greater_keys = {key.lower() for key in self.greater_keys}
rule = 'less' less_keys = {key.lower() for key in self.less_keys}
elif any(key in key_indicator_lc for key in greater_keys):
rule = 'greater' if key_indicator_lc in greater_keys:
elif any(key in key_indicator_lc for key in less_keys): rule = 'greater'
rule = 'less' elif key_indicator_lc in less_keys:
else: rule = 'less'
raise ValueError('Cannot infer the rule for key ' elif any(key in key_indicator_lc for key in greater_keys):
f'{key_indicator}, thus a specific rule ' rule = 'greater'
'must be specified.') elif any(key in key_indicator_lc for key in less_keys):
self.rule = rule rule = 'less'
self.key_indicator = key_indicator else:
if self.rule is not None: raise ValueError('Cannot infer the rule for key '
self.is_better_than = self.rule_map[self.rule] f'{key_indicator}, thus a specific rule '
'must be specified.')
if rule is not None:
self.is_better_than[key_indicator] = self.rule_map[rule]
self.rules.append(rule)
self.key_indicators = key_indicators
def after_train_iter(self, def after_train_iter(self,
runner, runner,
......
...@@ -49,6 +49,30 @@ class TestCheckpointHook: ...@@ -49,6 +49,30 @@ class TestCheckpointHook:
assert checkpoint_hook.out_dir == ( assert checkpoint_hook.out_dir == (
f'test_dir/{osp.basename(work_dir)}') f'test_dir/{osp.basename(work_dir)}')
runner.message_hub = MessageHub.get_instance('test_before_train')
# no 'best_ckpt_path' in runtime_info
checkpoint_hook = CheckpointHook(interval=1, save_best=['acc', 'mIoU'])
checkpoint_hook.before_train(runner)
assert checkpoint_hook.best_ckpt_path_dict == dict(acc=None, mIoU=None)
assert not hasattr(checkpoint_hook, 'best_ckpt_path')
# only one 'best_ckpt_path' in runtime_info
runner.message_hub.update_info('best_ckpt_acc', 'best_acc')
checkpoint_hook.before_train(runner)
assert checkpoint_hook.best_ckpt_path_dict == dict(
acc='best_acc', mIoU=None)
# no 'best_ckpt_path' in runtime_info
checkpoint_hook = CheckpointHook(interval=1, save_best='acc')
checkpoint_hook.before_train(runner)
assert checkpoint_hook.best_ckpt_path is None
assert not hasattr(checkpoint_hook, 'best_ckpt_path_dict')
# 'best_ckpt_path' in runtime_info
runner.message_hub.update_info('best_ckpt', 'best_ckpt')
checkpoint_hook.before_train(runner)
assert checkpoint_hook.best_ckpt_path == 'best_ckpt'
def test_after_val_epoch(self, tmp_path): def test_after_val_epoch(self, tmp_path):
runner = Mock() runner = Mock()
runner.work_dir = tmp_path runner.work_dir = tmp_path
...@@ -69,7 +93,7 @@ class TestCheckpointHook: ...@@ -69,7 +93,7 @@ class TestCheckpointHook:
with pytest.warns(UserWarning) as record_warnings: with pytest.warns(UserWarning) as record_warnings:
eval_hook = CheckpointHook( eval_hook = CheckpointHook(
interval=2, by_epoch=True, save_best='auto') interval=2, by_epoch=True, save_best='auto')
eval_hook._get_metric_score(None) eval_hook._get_metric_score(None, None)
# Since there will be many warnings thrown, we just need to check # Since there will be many warnings thrown, we just need to check
# if the expected exceptions are thrown # if the expected exceptions are thrown
expected_message = ( expected_message = (
...@@ -82,6 +106,17 @@ class TestCheckpointHook: ...@@ -82,6 +106,17 @@ class TestCheckpointHook:
else: else:
assert False assert False
# test error when number of rules and metrics are not same
with pytest.raises(AssertionError) as assert_error:
CheckpointHook(
interval=1,
save_best=['mIoU', 'acc'],
rule=['greater', 'greater', 'less'],
by_epoch=True)
error_message = ('Number of "rule" must be 1 or the same as number of '
'"save_best", but got 3.')
assert error_message in str(assert_error.value)
# if save_best is None,no best_ckpt meta should be stored # if save_best is None,no best_ckpt meta should be stored
eval_hook = CheckpointHook(interval=2, by_epoch=True, save_best=None) eval_hook = CheckpointHook(interval=2, by_epoch=True, save_best=None)
eval_hook.before_train(runner) eval_hook.before_train(runner)
...@@ -97,8 +132,8 @@ class TestCheckpointHook: ...@@ -97,8 +132,8 @@ class TestCheckpointHook:
best_ckpt_name = 'best_acc_epoch_10.pth' best_ckpt_name = 'best_acc_epoch_10.pth'
best_ckpt_path = eval_hook.file_client.join_path( best_ckpt_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_ckpt_name) eval_hook.out_dir, best_ckpt_name)
assert eval_hook.key_indicator == 'acc' assert eval_hook.key_indicators == ['acc']
assert eval_hook.rule == 'greater' assert eval_hook.rules == ['greater']
assert 'best_score' in runner.message_hub.runtime_info and \ assert 'best_score' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score') == 0.5 runner.message_hub.get_info('best_score') == 0.5
assert 'best_ckpt' in runner.message_hub.runtime_info and \ assert 'best_ckpt' in runner.message_hub.runtime_info and \
...@@ -142,6 +177,42 @@ class TestCheckpointHook: ...@@ -142,6 +177,42 @@ class TestCheckpointHook:
assert 'best_score' in runner.message_hub.runtime_info and \ assert 'best_score' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score') == 1.0 runner.message_hub.get_info('best_score') == 1.0
# test multi `save_best` with one rule
eval_hook = CheckpointHook(
interval=2, save_best=['acc', 'mIoU'], rule='greater')
assert eval_hook.key_indicators == ['acc', 'mIoU']
assert eval_hook.rules == ['greater', 'greater']
# test multi `save_best` with multi rules
eval_hook = CheckpointHook(
interval=2, save_best=['FID', 'IS'], rule=['less', 'greater'])
assert eval_hook.key_indicators == ['FID', 'IS']
assert eval_hook.rules == ['less', 'greater']
# test multi `save_best` with default rule
eval_hook = CheckpointHook(interval=2, save_best=['acc', 'mIoU'])
assert eval_hook.key_indicators == ['acc', 'mIoU']
assert eval_hook.rules == ['greater', 'greater']
runner.message_hub = MessageHub.get_instance(
'test_after_val_epoch_save_multi_best')
eval_hook.before_train(runner)
metrics = dict(acc=0.5, mIoU=0.6)
eval_hook.after_val_epoch(runner, metrics)
best_acc_name = 'best_acc_epoch_10.pth'
best_acc_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_acc_name)
best_mIoU_name = 'best_mIoU_epoch_10.pth'
best_mIoU_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_mIoU_name)
assert 'best_score_acc' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score_acc') == 0.5
assert 'best_score_mIoU' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score_mIoU') == 0.6
assert 'best_ckpt_acc' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_ckpt_acc') == best_acc_path
assert 'best_ckpt_mIoU' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_ckpt_mIoU') == best_mIoU_path
# test behavior when by_epoch is False # test behavior when by_epoch is False
runner = Mock() runner = Mock()
runner.work_dir = tmp_path runner.work_dir = tmp_path
...@@ -156,8 +227,8 @@ class TestCheckpointHook: ...@@ -156,8 +227,8 @@ class TestCheckpointHook:
interval=2, by_epoch=False, save_best='acc', rule='greater') interval=2, by_epoch=False, save_best='acc', rule='greater')
eval_hook.before_train(runner) eval_hook.before_train(runner)
eval_hook.after_val_epoch(runner, metrics) eval_hook.after_val_epoch(runner, metrics)
assert eval_hook.key_indicator == 'acc' assert eval_hook.key_indicators == ['acc']
assert eval_hook.rule == 'greater' assert eval_hook.rules == ['greater']
best_ckpt_name = 'best_acc_iter_10.pth' best_ckpt_name = 'best_acc_iter_10.pth'
best_ckpt_path = eval_hook.file_client.join_path( best_ckpt_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_ckpt_name) eval_hook.out_dir, best_ckpt_name)
...@@ -176,6 +247,38 @@ class TestCheckpointHook: ...@@ -176,6 +247,38 @@ class TestCheckpointHook:
runner.message_hub.get_info('best_ckpt') == best_ckpt_path runner.message_hub.get_info('best_ckpt') == best_ckpt_path
assert 'best_score' in runner.message_hub.runtime_info and \ assert 'best_score' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score') == 0.666 runner.message_hub.get_info('best_score') == 0.666
# error when 'auto' in `save_best` list
with pytest.raises(AssertionError):
CheckpointHook(interval=2, save_best=['auto', 'acc'])
# error when one `save_best` with multi `rule`
with pytest.raises(AssertionError):
CheckpointHook(
interval=2, save_best='acc', rule=['greater', 'less'])
# check best checkpoint name with `by_epoch` is False
eval_hook = CheckpointHook(
interval=2, by_epoch=False, save_best=['acc', 'mIoU'])
assert eval_hook.key_indicators == ['acc', 'mIoU']
assert eval_hook.rules == ['greater', 'greater']
runner.message_hub = MessageHub.get_instance(
'test_after_val_epoch_save_multi_best_by_epoch_is_false')
eval_hook.before_train(runner)
metrics = dict(acc=0.5, mIoU=0.6)
eval_hook.after_val_epoch(runner, metrics)
best_acc_name = 'best_acc_iter_10.pth'
best_acc_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_acc_name)
best_mIoU_name = 'best_mIoU_iter_10.pth'
best_mIoU_path = eval_hook.file_client.join_path(
eval_hook.out_dir, best_mIoU_name)
assert 'best_score_acc' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score_acc') == 0.5
assert 'best_score_mIoU' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_score_mIoU') == 0.6
assert 'best_ckpt_acc' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_ckpt_acc') == best_acc_path
assert 'best_ckpt_mIoU' in runner.message_hub.runtime_info and \
runner.message_hub.get_info('best_ckpt_mIoU') == best_mIoU_path
def test_after_train_epoch(self, tmp_path): def test_after_train_epoch(self, tmp_path):
runner = Mock() runner = Mock()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment