Skip to content
Snippets Groups Projects
Unverified Commit fafb476e authored by sjiang95's avatar sjiang95 Committed by GitHub
Browse files

[Feature] get_model_complexity_info() supports multiple inputs (#1065)

parent 43165160
No related branches found
No related tags found
No related merge requests found
......@@ -12,6 +12,7 @@ from rich.console import Console
from rich.table import Table
from torch import nn
from mmengine.utils import is_tuple_of
from .complexity_analysis import (ActivationAnalyzer, FlopAnalyzer,
parameter_count)
......@@ -675,19 +676,38 @@ def complexity_stats_table(
def get_model_complexity_info(
model: nn.Module,
input_shape: Optional[tuple] = None,
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], None] = None,
input_shape: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...],
None] = None,
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], Tuple[Any, ...],
None] = None,
show_table: bool = True,
show_arch: bool = True,
):
"""Interface to get the complexity of a model.
The parameter `inputs` are fed to the forward method of model.
If `inputs` is not specified, the `input_shape` is required and
it will be used to construct the dummy input fed to model.
If the forward of model requires two or more inputs, the `inputs`
should be a tuple of tensor or the `input_shape` should be a tuple
of tuple which each element will be constructed into a dumpy input.
Examples:
>>> # the forward of model accepts only one input
>>> input_shape = (3, 224, 224)
>>> get_model_complexity_info(model, input_shape=input_shape)
>>> # the forward of model accepts two or more inputs
>>> input_shape = ((3, 224, 224), (3, 10))
>>> get_model_complexity_info(model, input_shape=input_shape)
Args:
model (nn.Module): The model to analyze.
input_shape (tuple, optional): The input shape of the model.
If inputs is not specified, the input_shape should be set.
input_shape (Union[Tuple[int, ...], Tuple[Tuple[int, ...]], None]):
The input shape of the model.
If "inputs" is not specified, the "input_shape" should be set.
Defaults to None.
inputs (torch.Tensor or tuple[torch.Tensor, ...], optional]):
inputs (torch.Tensor, tuple[torch.Tensor, ...] or Tuple[Any, ...],\
optional]):
The input tensor(s) of the model. If not given the input tensor
will be generated automatically with the given input_shape.
Defaults to None.
......@@ -705,7 +725,21 @@ def get_model_complexity_info(
raise ValueError('"input_shape" and "inputs" cannot be both set.')
if inputs is None:
inputs = (torch.randn(1, *input_shape), )
if is_tuple_of(input_shape, int): # tuple of int, construct one tensor
inputs = (torch.randn(1, *input_shape), )
elif is_tuple_of(input_shape, tuple) and all([
is_tuple_of(one_input_shape, int)
for one_input_shape in input_shape # type: ignore
]): # tuple of tuple of int, construct multiple tensors
inputs = tuple([
torch.randn(1, *one_input_shape)
for one_input_shape in input_shape # type: ignore
])
else:
raise ValueError(
'"input_shape" should be either a `tuple of int` (to construct'
'one input tensor) or a `tuple of tuple of int` (to construct'
'multiple input tensors).')
flop_handler = FlopAnalyzer(model, inputs)
activation_handler = ActivationAnalyzer(model, inputs)
......
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn as nn
from mmengine.analysis.complexity_analysis import FlopAnalyzer, parameter_count
from mmengine.analysis.print_helper import get_model_complexity_info
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
class NetAcceptOneTensor(nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = nn.Linear(in_features=5, out_features=6)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.l1(x)
return out
class NetAcceptTwoTensors(nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = nn.Linear(in_features=5, out_features=6)
self.l2 = nn.Linear(in_features=7, out_features=6)
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
out = self.l1(x1) + self.l2(x2)
return out
class NetAcceptOneTensorAndOneScalar(nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = nn.Linear(in_features=5, out_features=6)
self.l2 = nn.Linear(in_features=5, out_features=6)
def forward(self, x1: torch.Tensor, r) -> torch.Tensor:
out = r * self.l1(x1) + (1 - r) * self.l2(x1)
return out
def test_get_model_complexity_info():
input1 = torch.randn(1, 9, 5)
input_shape1 = (9, 5)
input2 = torch.randn(1, 9, 7)
input_shape2 = (9, 7)
scalar = 0.3
# test a network that accepts one tensor as input
model = NetAcceptOneTensor()
complexity_info = get_model_complexity_info(model=model, inputs=input1)
flops = FlopAnalyzer(model=model, inputs=input1).total()
params = parameter_count(model=model)['']
assert complexity_info['flops'] == flops
assert complexity_info['params'] == params
complexity_info = get_model_complexity_info(
model=model, input_shape=input_shape1)
flops = FlopAnalyzer(
model=model, inputs=(torch.randn(1, *input_shape1), )).total()
assert complexity_info['flops'] == flops
# test a network that accepts two tensors as input
model = NetAcceptTwoTensors()
complexity_info = get_model_complexity_info(
model=model, inputs=(input1, input2))
flops = FlopAnalyzer(model=model, inputs=(input1, input2)).total()
params = parameter_count(model=model)['']
assert complexity_info['flops'] == flops
assert complexity_info['params'] == params
complexity_info = get_model_complexity_info(
model=model, input_shape=(input_shape1, input_shape2))
inputs = (torch.randn(1, *input_shape1), torch.randn(1, *input_shape2))
flops = FlopAnalyzer(model=model, inputs=inputs).total()
assert complexity_info['flops'] == flops
# test a network that accepts one tensor and one scalar as input
model = NetAcceptOneTensorAndOneScalar()
# For pytorch<1.9, a scalar input is not acceptable for torch.jit,
# wrap it to `torch.tensor`. See https://github.com/pytorch/pytorch/blob/cd9dd653e98534b5d3a9f2576df2feda40916f1d/torch/csrc/jit/python/python_arg_flatten.cpp#L90. # noqa: E501
scalar = torch.tensor([
scalar
]) if digit_version(TORCH_VERSION) < digit_version('1.9.0') else scalar
complexity_info = get_model_complexity_info(
model=model, inputs=(input1, scalar))
flops = FlopAnalyzer(model=model, inputs=(input1, scalar)).total()
params = parameter_count(model=model)['']
assert complexity_info['flops'] == flops
assert complexity_info['params'] == params
# `get_model_complexity_info()` should throw `ValueError`
# when neithor `inputs` nor `input_shape` is specified
with pytest.raises(ValueError, match='should be set'):
get_model_complexity_info(model)
# `get_model_complexity_info()` should throw `ValueError`
# when both `inputs` and `input_shape` are specified
model = NetAcceptOneTensor()
with pytest.raises(ValueError, match='cannot be both set'):
get_model_complexity_info(
model, inputs=input1, input_shape=input_shape1)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment