Newer
Older
from LogContainer import LogContainer
import numpy as np
gospodnetic
committed
from enum import Enum
class TableOrientation(Enum):
VERTICAL = 0
HORIZONTAL = 1
class Benchmark:
def __init__(self):
self.log_container_per_model = {}
self.methods_per_approach = {}
gospodnetic
committed
self.method_list = set()
self.approach_list = set()
def set_log_containers(self, log_container_per_model):
self.log_container_per_model = log_container_per_model
self.__extract_methods_per_approach()
def __extract_methods_per_approach(self):
for model in self.log_container_per_model:
for approach in self.log_container_per_model[model].methods_per_approach:
gospodnetic
committed
self.approach_list.add(approach)
for method in self.log_container_per_model[model].methods_per_approach[approach]:
gospodnetic
committed
self.method_list.add(method)
if approach in self.methods_per_approach:
if method not in self.methods_per_approach[approach]:
self.methods_per_approach[approach].append(method)
else:
self.methods_per_approach[approach] = [method]
gospodnetic
committed
# Generate average discarded values both per approach and per method
def generate_statistic_tex(self, orientation = TableOrientation.VERTICAL, output_path = "./"):
gospodnetic
committed
filename_per_method = output_path + "stats_per_method.tex"
filename_per_approach = output_path + "stats_per_approach.tex"
if (orientation == TableOrientation.VERTICAL):
self._generate_statistic_per_method_vertical(filename_per_method)
self._generate_statistic_per_approach_vertical(filename_per_approach)
# Per model per approach.
else:
self._generate_statistic_per_method_horizontal(filename_per_method)
self._generate_statistic_per_approach_horizontal(filename_per_approach)
gospodnetic
committed
def _generate_statistic_per_approach_vertical(self, filename):
tex_file = open(filename, "w")
gospodnetic
committed
tex_file.write("\n\\begin{table*}\n")
tex_file.write("\\centering\n")
tex_file.write("\\begin{tabular}{|c|")
tex_file.write(" c|" * len(self.log_container_per_model))
tex_file.write("}\n")
tex_file.write("\\hline\n")
gospodnetic
committed
discarded_per_approach = self.get_average_discarded_per_approach()
discarded_per_model_per_approach = self.get_average_discarded_per_model_per_approach()
gospodnetic
committed
# Write header.
tex_file.write(" ")
for model in self.log_container_per_model:
tex_file.write(" & {}".format(model))
gospodnetic
committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
for approach in discarded_per_approach:
print(approach)
# Average value over all models.
tex_file.write("\n\\hline\n")
tex_file.write("\\multirow{{{}}}{{*}}{{\\makecell{{{}}}}}".format(2, approach))
value = util.set_precision(discarded_per_approach[approach] * 100, 2)
tex_file.write("\n& \\multicolumn{{4}}{{c|}}{{{}}}".format(value))
tex_file.write("\\\\\n")
# Draw horizontal line spanning only under the multicolumn section.
tex_file.write("\n\\cline{{2-{}}}\n".format(len(self.log_container_per_model) + 1))
# Average value for each model.
for model in discarded_per_model_per_approach:
value = util.set_precision(discarded_per_model_per_approach[model][approach] * 100, 2)
tex_file.write(" & \\makecell{{{}}}".format(value))
tex_file.write("\\\\\n")
tex_file.write("\n\\hline\n")
tex_file.write("\\end{tabular}")
tex_file.write("\n\\end{table*}\n")
tex_file.close()
def _generate_statistic_per_method_vertical(self, filename):
tex_file = open(filename, "w")
tex_file.write("\n\\begin{table*}\n")
tex_file.write("\\centering\n")
tex_file.write("\\begin{tabular}{|c|")
tex_file.write(" c|" * len(self.log_container_per_model))
tex_file.write("}\n")
tex_file.write("\\hline\n")
discarded_per_method = self.get_average_discarded_per_method()
discarded_per_model_per_method = self.get_average_discarded_per_model_per_method()
# Write header.
tex_file.write(" ")
for model in self.log_container_per_model:
tex_file.write(" & {}".format(model))
gospodnetic
committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
for method in discarded_per_method:
# Average value over all models.
tex_file.write("\n\\hline\n")
tex_file.write("\\multirow{{{}}}{{*}}{{\\makecell{{{}}}}}".format(2, method))
value = util.set_precision(discarded_per_method[method] * 100, 2)
tex_file.write("\n& \\multicolumn{{{}}}{{c|}}{{{}}}".format(len(self.log_container_per_model), value))
tex_file.write("\\\\\n")
# Draw horizontal line spanning only under the multicolumn section.
tex_file.write("\n\\cline{{2-{}}}\n".format(len(self.log_container_per_model) + 1))
# Average value for each model.
for model in discarded_per_model_per_method:
value = util.set_precision(discarded_per_model_per_method[model][method] * 100, 2)
tex_file.write(" & \\makecell{{{}}}".format(value))
tex_file.write("\\\\\n")
tex_file.write("\n\\hline\n")
tex_file.write("\\end{tabular}")
tex_file.write("\n\\end{table*}\n")
tex_file.close()
def _generate_statistic_per_approach_horizontal(self, filename):
tex_file = open(filename, "w")
tex_file.write("\n\\begin{table*}\n")
tex_file.write("\\centering\n")
tex_file.write("\\begin{tabular}{|c|")
tex_file.write(" c|" * len(self.approach_list))
tex_file.write("}\n")
tex_file.write("\\hline\n")
gospodnetic
committed
discarded_per_approach = self.get_average_discarded_per_approach()
discarded_per_model_per_approach = self.get_average_discarded_per_model_per_approach()
gospodnetic
committed
# Write header.
tex_file.write(" ")
for approach in discarded_per_approach:
tex_file.write(" & \\rotatebox{{75}}{{{}}}".format(approach))
tex_file.write("\\\\\n")
gospodnetic
committed
for model in self.log_container_per_model:
tex_file.write("{}".format(model))
for approach in discarded_per_approach:
value = util.set_precision(discarded_per_model_per_approach[model][approach] * 100, 2)
tex_file.write(" & {}".format(value))
tex_file.write("\\\\\n")
gospodnetic
committed
tex_file.write("\\hline\n")
tex_file.write("Average")
for approach in discarded_per_approach:
value = util.set_precision(discarded_per_approach[approach] * 100, 2)
tex_file.write(" & {}".format(value))
gospodnetic
committed
tex_file.write("\n\\hline\n")
tex_file.write("\\end{tabular}")
tex_file.write("\n\\end{table*}\n")
tex_file.close()
def _generate_statistic_per_method_horizontal(self, filename):
tex_file = open(filename, "w")
tex_file.write("\n\\begin{table*}\n")
tex_file.write("\\centering\n")
tex_file.write("\\begin{tabular}{|c|")
tex_file.write(" c|" * len(self.method_list))
tex_file.write("}\n")
tex_file.write("\\hline\n")
discarded_per_method = self.get_average_discarded_per_method()
discarded_per_model_per_method = self.get_average_discarded_per_model_per_method()
# Write header.
tex_file.write(" ")
for method in discarded_per_method:
tex_file.write(" & \\rotatebox{{75}}{{{}}}".format(method))
gospodnetic
committed
for model in self.log_container_per_model:
tex_file.write("{}".format(model))
for method in discarded_per_method:
value = util.set_precision(discarded_per_model_per_method[model][method] * 100, 2)
tex_file.write(" & {}".format(value))
tex_file.write("\\\\\n")
gospodnetic
committed
tex_file.write("\\hline\n")
tex_file.write("Average")
for method in discarded_per_method:
value = util.set_precision(discarded_per_method[method] * 100, 2)
tex_file.write(" & {}".format(value))
tex_file.write("\\\\\n")
tex_file.write("\n\\hline\n")
tex_file.write("\\end{tabular}")
tex_file.write("\n\\end{table*}\n")
tex_file.close()
# \usepackage{makecell} needed.
# \usepackage{multirow} needed.
gospodnetic
committed
# Generates a table showing how many viewpoint candidates were provided, how many were used after filtering,
# what was the number of optimal viewpoints and the coverage reached.
# If `with_discarded` is set, the table will include the information about how many viewpoints were available
# before and after filtering, otherwise only the total number of used viewpoints will be written.
gospodnetic
committed
def generate_performance_tex_table(self, output_path = "./", coverage_threshold=0.99, with_discarded=True):
filename = output_path
if with_discarded:
filename += "performance_table_discarded.tex"
else:
filename += "performance_table.tex"
tex_file = open(filename, "w")
gospodnetic
committed
tex_file.write("\\centering\n")
tex_file.write("\\begin{tabular}{|c| c|")
for model in self.log_container_per_model:
gospodnetic
committed
if with_discarded:
tex_file.write(" c c c c|")
else:
tex_file.write(" c c c|")
tex_file.write("}\n")
tex_file.write("\\hline\n")
# Header - model names
tex_file.write("\\multicolumn{2}{|c|}{}")
# Put models into array to ensure the order is always maintained.
models = []
gospodnetic
committed
if with_discarded:
for model in self.log_container_per_model:
tex_file.write(" & \\multicolumn{{4}}{{|c|}}{{{}}}".format(model))
models.append(model)
tex_file.write("\\\\\n")
# Header - column names
tex_file.write("\\hline\n")
tex_file.write("Approach & Method")
for model in models:
tex_file.write(" & \\#VPC & \\makecell{\\#VPC\\\\used} & \\#OVP & \\%")
tex_file.write("\\\\\n")
gospodnetic
committed
for approach in self.methods_per_approach:
method_count = len(self.methods_per_approach[approach])
tex_file.write("\n\\hline\n")
tex_file.write("\\multirow{{{}}}{{*}}{{\\makecell{{{}}}}}".format(method_count, approach))
gospodnetic
committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
for method in self.methods_per_approach[approach]:
tex_file.write("\n& \makecell{{{}}}".format(method))
for model in models:
try:
best_log = self.log_container_per_model[model].get_best_log(method, coverage_threshold)
except Exception as e:
tex_file.write(" & - & - & - & -")
continue
VPC_count = best_log.VPC["count"] + best_log.VPC["discarded_count"]
VPC_used = best_log.VPC["count"]
OVP = len(best_log.optimization["OVP"])
coverage = util.set_precision(best_log.coverage["percent_fraction"] * 100, 2)
tex_file.write(" & {} & {} & {} & {}".format(VPC_count, VPC_used, OVP, coverage))
tex_file.write("\\\\")
else:
for model in self.log_container_per_model:
tex_file.write(" & \\multicolumn{{3}}{{|c|}}{{{}}}".format(model))
models.append(model)
tex_file.write("\\\\\n")
# Header - column names
tex_file.write("\\hline\n")
tex_file.write("Approach & Method")
for model in models:
tex_file.write(" & \\#VPC & \\#OVP & \\%")
tex_file.write("\\\\\n")
gospodnetic
committed
for approach in self.methods_per_approach:
method_count = len(self.methods_per_approach[approach])
tex_file.write("\n\\hline\n")
tex_file.write("\\multirow{{{}}}{{*}}{{\\makecell{{{}}}}}".format(method_count, approach))
gospodnetic
committed
for method in self.methods_per_approach[approach]:
tex_file.write("\n& \makecell{{{}}}".format(method))
for model in models:
try:
best_log = self.log_container_per_model[model].get_best_log(method, coverage_threshold)
except Exception as e:
tex_file.write(" & - & - & -")
continue
VPC_count = best_log.VPC["count"] + best_log.VPC["discarded_count"]
OVP = len(best_log.optimization["OVP"])
coverage = util.set_precision(best_log.coverage["percent_fraction"] * 100, 2)
tex_file.write(" & {} & {} & {}".format(VPC_count, OVP, coverage))
tex_file.write("\\\\")
tex_file.write("\n\\hline\n")
tex_file.write("\\end{tabular}")
tex_file.write("\n\\end{table*}\n")
tex_file.close()
# \usepackage{longtable} needed.
gospodnetic
committed
# Performance of every OVP log file.
gospodnetic
committed
def generate_complete_tex_table(self, output_path = "./"):
tex_file = open(output_path + "complete_table.tex", "w")
for model in self.log_container_per_model:
tex_file.write("\n\\begin{longtable}{|c c c c c c c c|}\n")
tex_file.write("\\hline\n")
gospodnetic
committed
if self.log_container_per_model[model].size() == 0:
raise Exception("Model log container of size 0, Object space exploration approach method likely not specified!")
first_log = self.log_container_per_model[model].logs[0]
tex_file.write("\\multicolumn{{8}}{{|c|}}{{{} ({})}}\\\\\n".format(model, first_log.model["face_count"]))
tex_file.write("Method & Parameter & \\#VPC & \\#Discarded & \\#OVP & RT[S] & NBV[s] & coverage \\\\\n")
for approach in self.methods_per_approach:
for method in self.methods_per_approach[approach]:
logs_per_method = self.log_container_per_model[model].get_logs_by_method(method)
if len(logs_per_method) == 0:
continue
for log in logs_per_method:
tex_file.write("{} & {} & {} & {} & {} & {} & {} & {} \\\\\n".format(
log.VPC["method"],
log.VPC["generation_parameter"],
log.VPC["count"] + log.VPC["discarded_count"],
log.VPC["discarded_count"],
len(log.optimization["OVP"]),
util.set_precision(log.timing["visibility_matrix_sec"], 4),
util.set_precision(log.timing["optimization_sec"], 4),
util.set_precision(log.coverage["percent_fraction"], 4)))
tex_file.write("\\hline\n")
tex_file.write("\\end{longtable}\n")
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Average ray tracing duration.
def get_average_RT_duration_per_model(self):
avgs = {}
for model in self.log_container_per_model:
avgs.update(
{
model: self.log_container_per_model[model].get_avg_RT_duration()
})
return avgs
def get_average_discarded_per_approach(self):
discarded_per_approach_list = {}
for approach in self.methods_per_approach:
for model in self.log_container_per_model:
log_container = LogContainer(self.log_container_per_model[model].get_methods_per_approach())
log_container.add_logs(self.log_container_per_model[model].get_logs_by_approach(approach))
if log_container.size() == 0:
continue
container_avg = log_container.get_avg_discarded()
if approach in discarded_per_approach_list:
discarded_per_approach_list[approach].append(container_avg)
else:
discarded_per_approach_list[approach] = [container_avg]
discarded_per_approach = {}
for approach in discarded_per_approach_list:
discarded_per_approach[approach] = np.sum(discarded_per_approach_list[approach]) / len(discarded_per_approach_list[approach])
return discarded_per_approach
gospodnetic
committed
def get_average_discarded_per_method(self):
discarded_per_method_list = {}
for approach in self.methods_per_approach:
for method in self.methods_per_approach[approach]:
for model in self.log_container_per_model:
log_container = LogContainer(self.log_container_per_model[model].get_methods_per_approach())
log_container.add_logs(self.log_container_per_model[model].get_logs_by_method(method))
if log_container.size() == 0:
continue
container_avg = log_container.get_avg_discarded()
if method in discarded_per_method_list:
discarded_per_method_list[method].append(container_avg)
else:
discarded_per_method_list[method] = [container_avg]
discarded_per_method = {}
for method in discarded_per_method_list:
discarded_per_method[method] = np.sum(discarded_per_method_list[method]) / len(discarded_per_method_list[method])
return discarded_per_method
def get_average_discarded_per_model(self):
discarded_per_model = {}
for model in self.log_container_per_model:
model_avg = self.log_container_per_model[model].get_avg_discarded()
discarded_per_model[model] = model_avg
print("discarded_per_model {}".format(discarded_per_model))
return discarded_per_model
gospodnetic
committed
def get_average_discarded_per_model_per_method(self):
discarded_per_model_method = {}
for model in self.log_container_per_model:
for approach in self.methods_per_approach:
for method in self.methods_per_approach[approach]:
log_container = LogContainer(self.log_container_per_model[model].get_methods_per_approach())
log_container.add_logs(self.log_container_per_model[model].get_logs_by_method(method))
if log_container.size() == 0:
continue
if model in discarded_per_model_method:
discarded_per_model_method[model][method] = log_container.get_avg_discarded()
else:
discarded_per_model_method[model] = {}
discarded_per_model_method[model][method] = log_container.get_avg_discarded()
return discarded_per_model_method
def get_average_discarded_per_model_per_approach(self):
discarded_per_model_approach = {}
for model in self.log_container_per_model:
for approach in self.methods_per_approach:
log_container = LogContainer(self.log_container_per_model[model].get_methods_per_approach())
log_container.add_logs(self.log_container_per_model[model].get_logs_by_approach(approach))
if log_container.size() == 0:
continue
if model in discarded_per_model_approach:
discarded_per_model_approach[model][approach] = log_container.get_avg_discarded()
else:
discarded_per_model_approach[model] = {}
discarded_per_model_approach[model][approach] = log_container.get_avg_discarded()
return discarded_per_model_approach