Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "pinocchio/autodiff/casadi.hpp"
#include "pinocchio/algorithm/aba.hpp" // joint acceleration, Minverse
#include "pinocchio/algorithm/crba.hpp" // joint-space inertia (upper-triangle)
#include "pinocchio/algorithm/jacobian.hpp" // Jacobian
#include "pinocchio/algorithm/joint-configuration.hpp"
#include "pinocchio/algorithm/kinematics.hpp"
#include "pinocchio/algorithm/rnea.hpp" // Coriolis, gravity, joint torque
#include "pinocchio/parsers/urdf.hpp"
#include <iostream>
int main(int argc, char ** argv)
{
using namespace pinocchio;
//* typedef for CasADi Auto-Diff *//
typedef double Scalar;
typedef ::casadi::SX ADScalar;
typedef ModelTpl<Scalar> Model;
typedef Model::Data Data;
typedef ModelTpl<ADScalar> ADModel;
typedef ADModel::Data ADData;
typedef ADModel::ConfigVectorType ConfigVectorAD;
typedef ADModel::TangentVectorType TangentVectorAD;
//* load Franka Research 3 URDF file *//
const std::string urdf_filename = std::string("../model/fr3.urdf");
Model model;
pinocchio::urdf::buildModel(urdf_filename, model);
// std::cout << "model name: " << model.name << std::endl;
Data data(model);
// set end-effector's ID (joint 8)
const std::string ee_name = "fr_joint8";
JointIndex ee_joint_id = model.getJointId(ee_name);
if (ee_joint_id == 0)
{
std::cerr << "Invalid joint ID for end-effector: " << ee_name << std::endl;
return -1;
}
else
{
std::cout << "End-effector ID: " << ee_joint_id << std::endl; // 8
}
//* Pick up random configuration, velocity and acceleration vectors. *//
Eigen::VectorXd q = randomConfiguration(model);
Eigen::VectorXd v(Eigen::VectorXd::Random(model.nv));
Eigen::VectorXd a(Eigen::VectorXd::Random(model.nv));
std::cout << "q: " << q.transpose() << std::endl;
std::cout << "v: " << v.transpose() << std::endl;
std::cout << "a: " << a.transpose() << std::endl << std::endl;
//* Create CasADi model and data from Pinocchio model *//
ADModel ad_model = model.cast<ADScalar>();
ADData ad_data(ad_model);
//* Create symbolic CasADi vectors & Matices *//
// joint configuration
::casadi::SX cs_q = ::casadi::SX::sym("q", model.nq);
ConfigVectorAD q_ad(model.nq);
q_ad = Eigen::Map<ConfigVectorAD>(static_cast<std::vector<ADScalar>>(cs_q).data(), model.nq, 1);
// joint velocity
::casadi::SX cs_v = ::casadi::SX::sym("v", model.nv);
TangentVectorAD v_ad(model.nv);
v_ad = Eigen::Map<TangentVectorAD>(static_cast<std::vector<ADScalar>>(cs_v).data(), model.nv, 1);
// joint acceleration
::casadi::SX cs_a = ::casadi::SX::sym("a", model.nv);
TangentVectorAD a_ad(model.nv);
a_ad = Eigen::Map<TangentVectorAD>(static_cast<std::vector<ADScalar>>(cs_a).data(), model.nv, 1);
// Upper-triangular Mass Matrix
::casadi::SX cs_M = ::casadi::SX::zeros(model.nv, model.nv);
// ::casadi::SX cs_M_dot = ::casadi::SX::zeros(model.nv, model.nv);
::casadi::SX cs_Minv = ::casadi::SX::zeros(model.nv, model.nv);
::casadi::SX cs_Minv_dot = ::casadi::SX::zeros(model.nv, model.nv);
// end-effector Jacobian Matrix
::casadi::SX cs_J = ::casadi::SX::zeros(6, model.nv);
::casadi::SX cs_J_dot = ::casadi::SX::zeros(6, model.nv);
//* Create CasADi "symbolic" function *//
/* forward kinematics */
// "Numerical" forward kinematics
// ! joint : universe, joint1, joint2, ... joint7 => selecting joint8 would cause segmentation
// error pinocchio::forwardKinematics(model, data, q); for (JointIndex joint_id = 0; joint_id <
// (JointIndex) model.njoints; ++joint_id)
// {
// std::cout << std::setw(24) << std::left
// << model.names[joint_id] << ": "
// << std::fixed << std::setprecision(2)
// << data.oMi[joint_id].translation().transpose()
// << std::endl;
// }
// "Symbolic" forward kinematics
// pinocchio::forwardKinematics(ad_model, ad_data, q_ad);
// for (JointIndex joint_id = 0; joint_id < (JointIndex) ad_model.njoints; ++joint_id)
// {
// std::cout << std::setw(24) << std::left
// << ad_model.names[joint_id] << ": "
// << std::fixed << std::setprecision(2)
// << ad_data.oMi[joint_id].translation().transpose()
// << std::endl;
// }
/* CRBA algorithm : compute Mass Matrix */
pinocchio::crba(ad_model, ad_data, q_ad);
for (int i = 0; i < model.nv; ++i)
{
for (int j = 0; j < model.nv; ++j)
{
cs_M(i, j) = ad_data.M(i, j); // copy symbolic M(q) into CasADi matrix
}
}
// std::cout << "Symbolic mass matrix:\n" << cs_M << std::endl;
// derivative of M w.r.t time
// for (int i = 0; i < model.nv; ++i)
// {
// for (int j = 0; j < model.nv; ++j)
// {
// ::casadi::SX dMij_dq = jacobian(cs_M(i,j), cs_q); // extract derivative of M[i, j] w.r.t
// all q cs_M_dot(i, j) = mtimes(dMij_dq, cs_v); // multiply by v and sum over nq
// }
// }
/* compute derivative of Inverse Mass Matrix */
pinocchio::computeMinverse(ad_model, ad_data, q_ad);
for (int i = 0; i < model.nv; ++i)
{
for (int j = 0; j < model.nv; ++j)
{
cs_Minv(i, j) = ad_data.Minv(i, j); // copy symbolic M(q) into CasADi matrix
}
}
for (int i = 0; i < model.nv; ++i)
{
for (int j = 0; j < model.nv; ++j)
{
::casadi::SX dMinv_dq = jacobian(cs_Minv(i, j), cs_q);
cs_Minv_dot(i, j) = mtimes(dMinv_dq, cs_v);
}
}
/* compute derivative of (end-effector) Jacobian matrix */
// !!!!! Segmentation fault
// Eigen::Matrix<ADScalar, 6, Eigen::Dynamic> J(6, model.nv);
// Data::Matrix6x J(6, model.nv);
// J.setZero();
// pinocchio::computeJointJacobian(model, data, q, ee_joint_id, J);
// pinocchio::computeJointJacobian(ad_model, ad_data, q_ad, ee_joint_id, J);
// pinocchio::computeJointJacobian(ad_model, ad_data, q_ad, ee_joint_id, ad_data.J);
// std::cout << "Jacobian J:\n" << J << std::endl;
// compute "Numerical" Jacobian
// pinocchio::computeJointJacobians(model, data, q);
// std::cout << "Jacobian J:\n" << data.J << std::endl;
// compute "Symbolic" Jacobian
pinocchio::computeJointJacobians(ad_model, ad_data, q_ad);
for (int i = 0; i < 6; ++i)
{
for (int j = 0; j < model.nv; ++j)
{
cs_J(i, j) = ad_data.J(i, j); // copy symbolic J(q) into CasADi matrix
}
}
// std::cout << "Symbolic mass matrix:\n" << cs_J << std::endl;
// Jacobian derivative
for (int i = 0; i < 6; ++i)
{
for (int j = 0; j < model.nv; ++j)
{
::casadi::SX dJij_dq =
jacobian(cs_J(i, j), cs_q); // extract derivative of J[i, j] w.r.t all q
cs_J_dot(i, j) = mtimes(dJij_dq, cs_v); // multiply by v and sum over nq
}
}
/* Inverse Dynamics -> joint torque */
pinocchio::rnea(ad_model, ad_data, q_ad, v_ad, a_ad);
::casadi::SX tau_ad(model.nv, 1);
for (Eigen::DenseIndex k = 0; k < model.nv; ++k)
{
tau_ad(k) = ad_data.tau[k];
}
//* Build (symbolic) CasADi function for evaluation *//
::casadi::Function eval_rnea("eval_rnea", ::casadi::SXVector{ cs_q, cs_v, cs_a },
::casadi::SXVector{ tau_ad });
::casadi::Function eval_Minv_dot("eval_Minv_dot", ::casadi::SXVector{ cs_q, cs_v },
::casadi::SXVector{ cs_Minv_dot });
// std::cout << cs_Minv_dot << std::endl;
::casadi::Function eval_Jdot("eval_Jdot", ::casadi::SXVector{ cs_q, cs_v },
::casadi::SXVector{ cs_J_dot });
// std::cout << cs_J_dot << std::endl;
//* Evaluate CasADi expression with real value *//
std::vector<double> q_vec((size_t)model.nq);
Eigen::Map<Eigen::VectorXd>(q_vec.data(), model.nq, 1) = q;
std::vector<double> v_vec((size_t)model.nv);
Eigen::Map<Eigen::VectorXd>(v_vec.data(), model.nv, 1) = v;
std::vector<double> a_vec((size_t)model.nv);
Eigen::Map<Eigen::VectorXd>(a_vec.data(), model.nv, 1) = a;
// Inverse dynamics
::casadi::DM tau_casadi_res = eval_rnea(::casadi::DMVector{ q_vec, v_vec, a_vec })[0];
Data::TangentVectorType tau_casadi_vec = Eigen::Map<Data::TangentVectorType>(
static_cast<std::vector<double>>(tau_casadi_res).data(), model.nv, 1);
pinocchio::rnea(model, data, q, v, a);
std::cout << "pinocchio double:\n"
<< "\ttau = " << data.tau.transpose() << std::endl;
std::cout << "pinocchio CasADi:\n"
<< "\ttau = " << tau_casadi_vec.transpose() << std::endl;
// Minv_dot
::casadi::DM Minv_dot_res = eval_Minv_dot(::casadi::DMVector{ q_vec, v_vec })[0];
std::cout << "(CasADi) Minv_dot:" << Minv_dot_res << std::endl << std::endl;
// J_dot
::casadi::DM Jdot_res = eval_Jdot(::casadi::DMVector{ q_vec, v_vec })[0];
std::cout << "(CasADi) Jdot:" << Jdot_res << std::endl << std::endl;
pinocchio::computeJointJacobiansTimeVariation(model, data, q, v);
std::cout << "(pinocchio) Jdot:\n" << data.dJ << std::endl << std::endl;
}