Newer
Older
""" Autotuning for sum factorization kernels """
import os
import re
import subprocess
Dominic Kempf
committed
import filelock
import loopy as lp
from pytools import product
from cgen import ArrayOf, AlignedAttribute, Initializer
from dune.codegen.generation import cache_restoring, delete_cache_items
from dune.codegen.loopy.target import DuneTarget, type_floatingpoint
from dune.codegen.sumfact.realization import realize_sumfact_kernel_function
from dune.codegen.options import get_option, set_option
from dune.codegen.error import CodegenAutotuneError
def get_cmake_cache_entry(entry):
for line in open(os.path.join(get_option("project_basedir"), "CMakeCache.txt"), "r"):
match = re.match("{}:[INTERNAL|FILEPATH|BOOL|STRING|PATH|UNINITIALIZED|STATIC]+=(.*)".format(entry), line)
if match:
return match.groups()[0]
def get_dune_codegen_dir():
if get_cmake_cache_entry("CMAKE_PROJECT_NAME") == "dune-codegen":
return get_option("project_basedir")
else:
def compiler_invocation(name, filename):
# Determine the CMake Generator in use
gen = get_cmake_cache_entry("CMAKE_GENERATOR")
assert(gen == "Unix Makefiles")
# Find compiler path
compiler = get_cmake_cache_entry("CMAKE_CXX_COMPILER")
compile_flags = [compiler]
# Parse compiler flags
for line in open(os.path.join(get_dune_codegen_dir(), "python", "CMakeFiles", "_autotune_target.dir", "flags.make"), "r"):
match = re.match("([^=]*)=(.*)", line)
if match:
compile_flags.extend(match.groups()[1].split())
# Add the source file
compile_flags.append(filename)
# Parse linker flags
for line in open(os.path.join(get_dune_codegen_dir(), "python", "CMakeFiles", "_autotune_target.dir", "link.txt"), "r"):
match = re.match(".*_autotune_target (.*)", line)
if match:
for flag in match.groups()[0].split():
if flag.startswith("-") or os.path.isabs(flag):
compile_flags.append(flag)
else:
compile_flags.append(os.path.join(get_dune_codegen_dir(), "python", flag))
# Set an output name
compile_flags.append("-o")
compile_flags.append(name)
return compile_flags
def write_global_data(sf, filename):
opcounting = get_option("opcounter")
with open(filename, "a") as f:
# Get kernel
from dune.codegen.pdelab.localoperator import extract_kernel_from_cache
knl = realize_sumfact_kernel_function(sf)
constructor_knl = extract_kernel_from_cache("operator", "constructor_kernel", None, wrap_in_cgen=False, add_timings=False)
constructor_knl = constructor_knl.copy(target=DuneTarget(declare_temporaries=False))
constructor_knl = lp.get_one_scheduled_kernel(constructor_knl)
target = DuneTarget()
from loopy.codegen import CodeGenerationState
codegen_state = CodeGenerationState(kernel=constructor_knl,
implemented_data_info=None,
implemented_domain=None,
implemented_predicates=frozenset(),
seen_dtypes=frozenset(),
seen_functions=frozenset(),
seen_atomic_dtypes=frozenset(),
var_subst_map={},
allow_complex=False,
is_generating_device_code=True,
)
for decl in target.get_device_ast_builder().get_temporary_decls(codegen_state, 0):
f.write("{}\n".format(next(iter(decl.generate()))))
def write_setup_code(sf, filename, define_thetas=True):
with open(filename, "a") as f:
# Setup a polynomial object (normally done in the LocalOperator members)
from dune.codegen.loopy.target import type_floatingpoint
real = type_floatingpoint()
f.write(" using RF = {};\n".format(real))
f.write(" using DF = {};\n".format(real))
from dune.codegen.sumfact.tabulation import name_polynomials
degs = tuple(m.basis_size - 1 for m in sf.matrix_sequence_quadrature_permuted)
for deg in set(degs):
f.write(" Dune::QkStuff::EquidistantLagrangePolynomials<DF, RF, {}> {};\n".format(deg, name_polynomials(deg)))
# Get kernel
from dune.codegen.pdelab.localoperator import extract_kernel_from_cache
knl = realize_sumfact_kernel_function(sf)
constructor_knl = extract_kernel_from_cache("operator", "constructor_kernel", None, wrap_in_cgen=False, add_timings=False)
constructor_knl = constructor_knl.copy(target=DuneTarget(declare_temporaries=False))
constructor_knl = lp.get_one_scheduled_kernel(constructor_knl)
# Allocate buffers
alignment = get_option("max_vector_width") // 8
size = max(product(m.quadrature_size for m in sf.matrix_sequence_quadrature_permuted) * sf.vector_width,
product(m.basis_size for m in sf.matrix_sequence_quadrature_permuted) * sf.vector_width)
f.writelines([" char buffer0[{}] __attribute__ ((aligned ({})));\n".format(size, alignment),
" char buffer1[{}] __attribute__ ((aligned ({})));\n".format(size, alignment),
# Setup fastdg inputs
for arg in sf.interface.signature_args:
if "jacobian" in arg:
f.write("{} = 0;\n".format(arg))
else:
f.write(" RF {}[{}] __attribute__ ((aligned ({})));\n".format(arg.split()[-1], size, alignment))
# Write stuff into the input buffer
f.writelines([" {0} *input = ({0} *)buffer0;\n".format(real),
" {0} *output = ({0} *)buffer{1};\n".format(real, sf.length % 2),
" for(int i=0; i<{}; ++i)\n".format(size / (get_option("precision_bits") / 8)),
" input[i] = ({})(i+1);\n".format(real),
])
target = DuneTarget()
from loopy.codegen import CodeGenerationState
codegen_state = CodeGenerationState(kernel=constructor_knl,
implemented_data_info=None,
implemented_domain=None,
implemented_predicates=frozenset(),
seen_dtypes=frozenset(),
seen_functions=frozenset(),
seen_atomic_dtypes=frozenset(),
var_subst_map={},
allow_complex=False,
is_generating_device_code=True,
)
if define_thetas:
for decl in target.get_device_ast_builder().get_temporary_decls(codegen_state, 0):
f.write(" {}\n".format(next(iter(decl.generate()))))
for _, line in constructor_knl.preambles:
if "gfsu" not in line:
f.write(" {}\n".format(line))
# Add setup code for theta matrices. We add some lines not necessary,
# but it would be more work to remove them than keeping them.
for line in lp.generate_body(constructor_knl).split("\n")[1:-1]:
if "gfsu" not in line and "meshwidth" not in line and "geometry" not in line:
f.write(" {}\n".format(line))
# INtroduces a variable that makes sure that the kernel cannot be optimized away
f.writelines([" {} accum;\n".format(real),
" std::mt19937 rng;\n",
" rng.seed(42);\n",
" std::uniform_int_distribution<> dis(0, {});\n".format(size / (get_option("precision_bits") / 8)),
])
def generate_standalone_code_google_benchmark(sf, filename):
delete_cache_items("kernel_default")
# Turn off opcounting
opcounting = get_option("opcounter")
set_option("opcounter", False)
# Extract sum factorization kernel
from dune.codegen.pdelab.localoperator import extract_kernel_from_cache
knl = realize_sumfact_kernel_function(sf)
# Add the implementation of the kernel.
# TODO: This can probably done in a safer way?
first_line = knl.member.lines[0]
arguments = first_line[first_line.find("(") + 1:first_line.find(")")]
with open(filename, "w") as f:
f.writelines(["// {}".format(first_line),
"\n",
"#include \"config.h\"\n",
"#include \"benchmark/benchmark.h\"\n",
"#include<dune/pdelab/finiteelementmap/qkdg.hh>\n",
"#include<dune/codegen/common/vectorclass.hh>\n",
"#include<dune/codegen/sumfact/onedquadrature.hh>\n",
"#include<dune/codegen/sumfact/horizontaladd.hh>\n",
"#include<random>\n",
"#include<fstream>\n",
"#include<iostream>\n",
"\n"
])
with open(filename, "a") as f:
arguments = ', '.join(sf.interface.signature_args)
if len(arguments) > 0:
arguments = ', ' + arguments
arguments = 'const char* buffer0, const char* buffer1' + arguments
f.write("void sumfact_kernel({})\n".format(arguments))
for line in knl.member.lines[1:]:
f.write("{}\n".format(line))
f.write("\n\n")
f.write("static void BM_sumfact_kernel(benchmark::State& state){\n")
write_setup_code(sf, filename, define_thetas=False)
additional_arguments = [i.split()[-1] for i in sf.interface.signature_args]
additional_arguments = ', '.join(additional_arguments)
if len(additional_arguments) > 0:
additional_arguments = ', ' + additional_arguments
with open(filename, "a") as f:
f.writelines([" for (auto _ : state){\n",
" sumfact_kernel(buffer0, buffer1{});\n".format(additional_arguments),
" }\n",
"}\n",
"BENCHMARK(BM_sumfact_kernel);\n",
"\n",
"BENCHMARK_MAIN();"
])
# Maybe turn opcounting on again
set_option("opcounter", opcounting)
def generate_standalone_code(sf, filename):
delete_cache_items("kernel_default")
# Turn off opcounting
opcounting = get_option("opcounter")
set_option("opcounter", False)
# Extract sum factorization kernel
from dune.codegen.pdelab.localoperator import extract_kernel_from_cache
knl = realize_sumfact_kernel_function(sf)
with open(filename, "w") as f:
f.writelines(["// {}".format(first_line),
"\n",
"#include \"config.h\"\n",
"#include<dune/pdelab/finiteelementmap/qkdg.hh>\n",
"#include<dune/codegen/common/tsc.hh>\n",
"#include<dune/codegen/common/vectorclass.hh>\n",
"#include<dune/codegen/sumfact/onedquadrature.hh>\n",
"#include<dune/codegen/sumfact/horizontaladd.hh>\n",
"#include<random>\n",
"#include<fstream>\n",
"#include<iostream>\n",
"\n"
])
f.writelines(["int main(int argc, char** argv)\n",
"{\n",
])
write_setup_code(sf, filename)
# Write measurement
with open(filename, "a") as f:
])
# Add the implementation of the kernel.
repeats = int(1e9 / sf.operations)
f.write(" for(int i=0; i<{}; ++i)\n".format(repeats))
f.write(" {\n")
for line in knl.member.lines[1:]:
f.write(" {}\n".format(line))
f.write(" }\n")
# Stop the TSC timer and write the result to a file
f.writelines([" auto stop = Dune::PDELab::TSC::stop();\n",
" std::ofstream file;\n",
" file.open(argv[1]);\n",
" file << Dune::PDELab::TSC::elapsed(start, stop) / {} << std::endl;\n".format(str(float(repeats))),
" file.close();\n",
" accum += output[dis(rng)];\n",
" std::cout << accum;\n",
"}\n",
])
# Maybe turn opcounting on again
set_option("opcounter", opcounting)
def generate_standalone_kernel_code(kernel, signature, filename):
with open(filename, 'w') as f:
# Write headers
headers = ['#include "config.h"',
'#include <iostream>',
'#include <fstream>',
'#include <random>',
'#include "benchmark/benchmark.h"',
'#include <dune/codegen/common/vectorclass.hh>',
'#include <dune/codegen/sumfact/horizontaladd.hh>',
]
f.write("\n".join(headers))
# Get a list of the function argument names
assert len(signature) == 1
sig = signature[0]
arguments = [a.split(' ')[-1] for a in arguments]
global_args = [a for a in kernel.args if a.name not in arguments]
# Declare global arguments
f.write('\n\n')
target = DuneTarget()
for g in global_args:
decl_info = g.decl_info(target, True, g.dtype)
for idi in decl_info:
ast_builder = target.get_device_ast_builder()
arg_decl = lp.target.c.POD(ast_builder, idi.dtype, idi.name)
arg_decl = ArrayOf(arg_decl, reduce(mul, g.shape))
arg_decl = AlignedAttribute(g.dtype.itemsize * g.vector_size(target), arg_decl)
f.write('{}\n'.format(arg_decl))
# Generate function we want to benchmark
f.write('\n')
f.writelines(lp.generate_body(kernel))
f.write('\n\n')
# Generate function that will do the benchmarking
f.write('static void BM_sumfact_kernel(benchmark::State& state){\n')
# Declare random generators
real = type_floatingpoint()
lines = [' std::uniform_real_distribution<{}> unif(0,1);'.format(real),
' std::uniform_int_distribution<int> unif_int(0,1);',
' std::default_random_engine re;']
f.write('\n'.join(lines) + '\n')
# Declare function arguments
function_arguments = [a for a in kernel.args if a.name in arguments]
for arg in function_arguments:
if 'buffer' in arg.name:
byte_size = reduce(mul, arg.shape) * 8
f.write(' char {}[{}] __attribute__ ((aligned ({})));\n'.format(arg.name,
byte_size,
arg.alignment),)
elif isinstance(arg, lp.ValueArg):
assert 'jacobian_offset' in arg.name
decl = arg.get_arg_decl(ast_builder)
decl = Initializer(decl, 'unif_int(re)')
f.write(' {}\n'.format(decl))
else:
assert 'fastdg' in arg.name
size = reduce(mul, arg.shape)
min_stride = min([tag.stride for tag in arg.dim_tags])
size *= min_stride
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
alignment = arg.dtype.itemsize
f.write(' {} {}[{}] __attribute__ ((aligned ({})));\n'.format(real,
arg.name,
size,
alignment))
# Initialize arguments
def _initialize_arg(arg):
if isinstance(arg, lp.ValueArg):
return []
real = type_floatingpoint()
size = reduce(mul, arg.shape)
fill_name = arg.name + '_fill'
lines = [' {}* {} = (double *) {};'.format(real, fill_name, arg.name),
' for (std::size_t i=0; i<{}; ++i){{'.format(size),
' {}[i] = unif(re);'.format(fill_name),
' }']
return lines
for arg in kernel.args:
lines = _initialize_arg(arg)
f.write('\n'.join(lines) + '\n')
# Benchmark loop
function_call = kernel.name + '({})'.format(','.join(arguments))
f.writelines([' for (auto _ : state){\n',
' {};\n'.format(function_call),
' }\n',
])
f.write('}\n')
# Benchmark main
main = ['',
'BENCHMARK(BM_sumfact_kernel);',
'',
'BENCHMARK_MAIN();']
f.write('\n'.join(main))
def autotune_realization(sf=None, kernel=None, signature=None):
if sf is None:
assert kernel is not None
assert signature is not None
else:
assert kernel is None
assert signature is None
# Make sure that the benchmark directory exists
dir = os.path.join(get_option("project_basedir"), "autotune-benchmarks")
if not os.path.exists(dir):
os.mkdir(dir)
if sf is None:
basename = "autotune_sumfact_{}".format(kernel.name)
else:
basename = "autotune_sumfact_{}".format(sf.function_name)
basename = hashlib.sha256(basename.encode()).hexdigest()
filename = os.path.join(dir, "{}.cc".format(basename))
logname = os.path.join(dir, "{}.log".format(basename))
lock = os.path.join(dir, "{}.lock".format(basename))
executable = os.path.join(dir, basename)
Dominic Kempf
committed
# Generate and compile a benchmark program
#
# Note: cache restoring is only necessary when generating from SumfactKernel
Dominic Kempf
committed
with cache_restoring():
with filelock.FileLock(lock):
if not os.path.isfile(logname):
if sf is None:
generate_standalone_kernel_code(kernel, signature, filename)
elif get_option("autotune_google_benchmark"):
generate_standalone_code_google_benchmark(sf, filename)
else:
generate_standalone_code(sf, filename)
Dominic Kempf
committed
call = []
wrapper = get_cmake_cache_entry("DUNE_CODEGEN_BENCHMARK_COMPILATION_WRAPPER")
if wrapper:
call.append(wrapper)
call.extend(compiler_invocation(executable, filename))
ret = subprocess.call(call, stdout=devnull, stderr=subprocess.STDOUT)
raise CodegenAutotuneError("Compilation of autotune executable failed. Invocation: {}".format(" ".join(call)))
Dominic Kempf
committed
# File system synchronization!
while not os.path.exists(executable):
time.sleep(0.01)
Dominic Kempf
committed
# Check whether the user specified an execution wrapper
call = []
wrapper = get_cmake_cache_entry("DUNE_CODEGEN_BENCHMARK_EXECUTION_WRAPPER")
Dominic Kempf
committed
if wrapper:
call.append(wrapper)
# Run the benchmark program
if get_option("autotune_google_benchmark"):
call.append("--benchmark_out={}".format(logname))
# call.append("--benchmark_out_format=csv")
else:
call.append(logname)
Dominic Kempf
committed
ret = subprocess.call(call, stdout=devnull, stderr=subprocess.STDOUT)
raise CodegenAutotuneError("Execution of autotune benchmark failed. Invocation: {}".format(" ".join(call)))
# File system synchronization!
while not os.path.exists(logname):
time.sleep(0.01)
# Extract the result form the log file
if get_option("autotune_google_benchmark"):
import json
with open(logname) as json_file:
try:
data = json.load(json_file)
return data['benchmarks'][0]['cpu_time']
except Exception as e:
print("Error while loading file {}".format(logname))
raise e
else:
return float(next(iter(open(logname, "r")))) / 1000000