Skip to content
Snippets Groups Projects
vectorization.py 15 KiB
Newer Older
""" Sum factorization vectorization """

from dune.perftool.loopy.target import dtype_floatingpoint
from dune.perftool.loopy.vcl import get_vcl_type_size
from dune.perftool.loopy.symbolic import SumfactKernel, VectorizedSumfactKernel
from dune.perftool.generation import (backend,
                                      generator_factory,
                                      get_backend,
Dominic Kempf's avatar
Dominic Kempf committed
                                      get_global_context_value,
from dune.perftool.pdelab.restriction import (Restriction,
                                              restricted_name,
                                              )
from dune.perftool.sumfact.tabulation import (BasisTabulationMatrixArray,
                                              quadrature_points_per_direction,
from dune.perftool.error import PerftoolVectorizationError
from dune.perftool.options import get_form_option
from dune.perftool.tools import add_to_frozendict, round_to_multiple, list_diff
from pytools import product
from frozendict import frozendict
import itertools as it
Dominic Kempf's avatar
Dominic Kempf committed
@generator_factory(item_tags=("vecinfo", "dryrundata"), cache_key_generator=lambda o, n: o)
def _cache_vectorization_info(old, new):
    if new is None:
        raise PerftoolVectorizationError("Vectorization info for sum factorization kernel was not gathered correctly!")
Dominic Kempf's avatar
Dominic Kempf committed
    return new
_collect_sumfact_nodes = generator_factory(item_tags=("sumfactnodes", "dryrundata"), context_tags="kernel", no_deco=True)

Dominic Kempf's avatar
Dominic Kempf committed

Dominic Kempf's avatar
Dominic Kempf committed
def attach_vectorization_info(sf):
    assert isinstance(sf, SumfactKernel)
    if get_global_context_value("dry_run"):
Dominic Kempf's avatar
Dominic Kempf committed
        return _collect_sumfact_nodes(sf)
Dominic Kempf's avatar
Dominic Kempf committed
    else:
        return _cache_vectorization_info(sf, None)
@backend(interface="vectorization_strategy", name="model")
def costmodel(sf):
    # Penalize vertical vectorization
    vertical_penalty = 1 + math.log(sf.vertical_width)

    # Penalize scalar sum factorization kernels
    scalar_penalty = 1
    if isinstance(sf, SumfactKernel):
        scalar_penalty = get_vcl_type_size(dtype_floatingpoint())
    # Return total operations
    return sf.operations * vertical_penalty * scalar_penalty
@backend(interface="vectorization_strategy", name="fromlist")
def fromlist_costmodel(sf):
    # The fromlist strategy needs to reuse the cost model!
    return costmodel(sf)


Dominic Kempf's avatar
Dominic Kempf committed
@backend(interface="vectorization_strategy", name="explicit")
def explicit_costfunction(sf):
    # Read the explicitly set values for horizontal and vertical vectorization
    width = get_vcl_type_size(dtype_floatingpoint())
    horizontal = get_form_option("vectorization_horizontal")
Dominic Kempf's avatar
Dominic Kempf committed
    if horizontal is None:
        horizontal = width
    vertical = get_form_option("vectorization_vertical")
Dominic Kempf's avatar
Dominic Kempf committed
    if vertical is None:
        vertical = 1
    horizontal = int(horizontal)
    vertical = int(vertical)
    if sf.horizontal_width == horizontal and sf.vertical_width == vertical:
        # Penalize position mapping
        return sf.operations
Dominic Kempf's avatar
Dominic Kempf committed
    else:
def strategy_cost(strat_tuple):
    qp, strategy = strat_tuple
Dominic Kempf's avatar
Dominic Kempf committed
    func = get_backend(interface="vectorization_strategy",
                       selector=lambda: get_form_option("vectorization_strategy"))
    keys = set(sf.cache_key for sf in strategy.values())
    set_quadrature_points(qp)

    # Sum over all the sum factorization kernels in the realization
    score = 0.0
    for sf in strategy.values():
        if sf.cache_key in keys:
            score = score + float(func(sf))
            keys.discard(sf.cache_key)

    return score
def fixedqp_strategy_costfunction(qp):
    def _cost(strategy):
        return strategy_cost((qp, strategy))

    return _cost


def stringify_vectorization_strategy(strategy):
    result = []
Dominic Kempf's avatar
Dominic Kempf committed
    result.append("Printing potential vectorization strategy:")
    result.append("Quadrature point tuple: {}".format(qp))

    # Look for all realizations in the strategy and iterate over them
    cache_keys = frozenset(v.cache_key for v in strategy.values())
    for ck in cache_keys:
        # Filter all the kernels that are realized by this and print
        for key in strategy:
            if strategy[key].cache_key == ck:
Dominic Kempf's avatar
Dominic Kempf committed
                result.append("{}:".format(key))

        # Find one representative to print
        for val in strategy.values():
            if val.cache_key == ck:
Dominic Kempf's avatar
Dominic Kempf committed
                result.append("    {}".format(val))
Dominic Kempf's avatar
Dominic Kempf committed
    return result

def decide_vectorization_strategy():
    """ Decide how to vectorize!
    Note that the vectorization of the quadrature loop is independent of this,
    as it is implemented through a post-processing (== loopy transformation) step.
    """
    logger = logging.getLogger(__name__)

    # Retrieve all sum factorization kernels for stage 1 and 3
    from dune.perftool.generation import retrieve_cache_items
    all_sumfacts = [i for i in retrieve_cache_items("kernel_default and sumfactnodes")]

    # Stage 1 sum factorizations that were actually used
    basis_sumfacts = [i for i in retrieve_cache_items('kernel_default and basis_sf_kernels')]

    # This means we can have sum factorizations that will not get used
    inactive_sumfacts = [i for i in all_sumfacts if i.stage == 1 and i not in basis_sumfacts]

    # All sum factorization kernels that get used
    active_sumfacts = [i for i in all_sumfacts if i.stage == 3 or i in basis_sumfacts]

    # If no vectorization is needed, abort now
    if get_form_option("vectorization_strategy") == "none":
        for sf in all_sumfacts:
            _cache_vectorization_info(sf, sf.copy(buffer=get_counted_variable("buffer")))
        return
    logger.debug("decide_vectorization_strategy: Found {} active sum factorization nodes"
                 .format(len(active_sumfacts)))
    # Find the best vectorization strategy by using a costmodel
    # Note that this optimization procedure uses a hierarchic approach to bypass
    # the problems of unfavorable complexity of the set of all possible vectorization
    # opportunities. Optimizations are performed at different levels (you find these
    # levels in the function names implementing them), where optimal solutions at a
    # higher level are combined into lower level solutions or optima of optimal solutions
    # at higher level are calculated:
    # * Level 1: Finding an optimal quadrature tuple (by finding optimum of level 2 optima)
    # * Level 2: Split by parallelizability and combine optima into optimal solution
    # * Level 3: Optimize number of different inputs to consider
    # * Level 4: Optimize horizontal/vertical/hybrid strategy
    width = get_vcl_type_size(dtype_floatingpoint())
    qp, sfdict = level1_optimal_vectorization_strategy(active_sumfacts, width)


#   TODO: Check how the 'fromlist' generator fits into the new overall picture
#
#     if get_form_option("vectorization_strategy") == "fromlist":
#         # This is a bit special and does not follow the minimization procedure at all
#
#         def _choose_strategy_from_list(stage1_sumfacts):
#             strategy = 0
#             for qp in quad_points:
#                 for strat in fixed_quad_vectorization_opportunity_generator(frozenset(stage1_sumfacts), width, qp):
#                     if strategy == int(get_form_option("vectorization_list_index")):
#                         # Output the strategy and its cost into a separate file
#                         if get_global_context_value("form_type") == "jacobian_apply":
#                             with open("strategycosts.csv", "a") as f:
#                                 f.write("{} {}\n".format(strategy, strategy_cost((qp, strat))))
#                         return qp, strat
#                     strategy = strategy + 1
#
#             raise PerftoolVectorizationError("Specified vectorization list index '{}' was too high!".format(get_form_option("vectorization_list_index")))
#
#         s1_sumfacts = frozenset(sf for sf in active_sumfacts if sf.stage == 1)
#
#         total = sum(len([s for s in fixed_quad_vectorization_opportunity_generator(frozenset(s1_sumfacts), width, qp)]) for qp in quad_points)
#         print("'fromlist' vectorization is attempting to pick #{} of {} strategies...".format(int(get_form_option("vectorization_list_index")),
#                                                                                               total))
#         qp, sfdict = _choose_strategy_from_list(s1_sumfacts)
#
#         keys = frozenset(sf.input_key for sf in active_sumfacts if sf.stage != 1)
#         for key in keys:
#             key_sumfacts = frozenset(sf for sf in active_sumfacts if sf.input_key == key)
#             minimum = min(fixed_quad_vectorization_opportunity_generator(key_sumfacts, width, qp),
#                           key=fixedqp_strategy_costfunction(qp))
#             sfdict = add_to_frozendict(sfdict, minimum)
    set_quadrature_points(qp)

    logger.debug("decide_vectorization_strategy: Decided for the following strategy:"
                 "\n".join(stringify_vectorization_strategy((qp, sfdict))))

    # We map inactive sum factorization kernels to 0
    sfdict = add_to_frozendict(sfdict, {sf: 0 for sf in inactive_sumfacts})

    # Register the results
    for sf in all_sumfacts:
        _cache_vectorization_info(sf, sfdict[sf])


def level1_optimal_vectorization_strategy(sumfacts, width):
    # Gather a list of possible quadrature point tuples
    quad_points = [quadrature_points_per_direction()]
    if get_form_option("vectorization_allow_quadrature_changes"):
        sf = next(iter(sumfacts))
        depth = 1
        while depth <= width:
            i = 0 if sf.matrix_sequence[0].face is None else 1
            quad = list(quadrature_points_per_direction())
            quad[i] = round_to_multiple(quad[i], depth)
            quad_points.append(tuple(quad))
            depth = depth * 2
        quad_points = list(set(quad_points))
    # Find the minimum cost strategy between all the quadrature point tuples
    optimal_strategies = {qp: level2_optimal_vectorization_strategy(sumfacts, width, qp) for qp in quad_points}
    qp = min(optimal_strategies, key=lambda qp: strategy_cost((qp, optimal_strategies[qp])))

    return qp, optimal_strategies[qp]


def level2_optimal_vectorization_strategy(sumfacts, width, qp):
    # Find the sets of simultaneously realizable kernels
    keys = frozenset(sf.parallel_key for sf in sumfacts)

    # Find minimums for each of these sets
    sfdict = frozendict()

    for key in keys:
        key_sumfacts = frozenset(sf for sf in sumfacts if sf.parallel_key == key)
        key_strategy = min(level2_optimal_vectorization_strategy_generator(key_sumfacts, width, qp),
                           key=fixedqp_strategy_costfunction(qp))
        sfdict = add_to_frozendict(sfdict, key_strategy)

    return sfdict


def level2_optimal_vectorization_strategy_generator(sumfacts, width, qp):
    for opp in _level2_optimal_vectorization_strategy_generator(sumfacts, width, qp):
        # Add non-vectorized implementation information to all kernels that are not present in
        # the optimal strategy
        yield add_to_frozendict(opp,
                                {sf: sf.copy(buffer=get_counted_variable("buffer")) for sf in sumfacts if sf not in opp})
def _level2_optimal_vectorization_strategy_generator(sumfacts, width, qp, already=frozendict()):
    if len(sumfacts) == 0:
        yield already
        return

    # We store the information whether a vectorization opportunity has been yielded from this
    # generator to yield an incomplete strategy if not (which is then completed with unvectorized
    # kernel implementations)
    yielded = False

    # Find the number of input coefficients we can work on
    keys = frozenset(sf.inout_key for sf in sumfacts)
    inoutkey_sumfacts = [tuple(sorted(filter(lambda sf: sf.inout_key == key, sumfacts))) for key in keys]

    for parallel in (1, 2):
        if parallel == 2 and next(iter(sumfacts)).stage == 3:
            continue
        for which in filter(lambda w: w == tuple(sorted(w)),
                            it.permutations(range(len(keys)), parallel)):
            horizontal = 1
            while horizontal <= width // parallel:
                combo = sum((inoutkey_sumfacts[part][:horizontal] for part in which), ())
                vecdict = get_vectorization_dict(combo, width // (horizontal * parallel), horizontal * parallel, qp)
                if vecdict is None:
                    # This particular choice was rejected for some reason.
                    # Possible reasons:
                    # * the quadrature point tuple not being suitable
                    #   for this vectorization strategy
                    # * there are not enough horizontal kernels
                    continue

                # Go into recursion to also vectorize all kernels not in this combo
                for opp in _level2_optimal_vectorization_strategy_generator(list_diff(sumfacts, combo),
                                                                            width,
                                                                            qp,
                                                                            add_to_frozendict(already, vecdict),
                                                                            ):
                    yielded = True
                    yield opp

    # If we did not yield on this recursion level, yield what we got so far
    if not yielded:
        yield already


def get_vectorization_dict(sumfacts, vertical, horizontal, qp):
    # Discard opportunities that do not contain enough horizontal kernels
    if len(sumfacts) not in (horizontal, horizontal - 1):
        return None

    # Enhance the list of sumfact nodes by adding vertical splittings
    kernels = []
    for sf in sumfacts:
        # No slicing needed in the pure horizontal case
        if vertical == 1:
            kernels.append(sf)
            continue

        # Determine the slicing direction
        slice_direction = 0 if sf.matrix_sequence[0].face is None else 1
        if qp[slice_direction] % vertical != 0:
            return None

        # Split the basis tabulation matrices
        oldtab = sf.matrix_sequence[slice_direction]
        for i in range(vertical):
            seq = list(sf.matrix_sequence)
            seq[slice_direction] = oldtab.copy(slice_size=vertical,
                                               slice_index=i)
            kernels.append(sf.copy(matrix_sequence=tuple(seq)))

    # Join the new kernels into a sum factorization node
    buffer = get_counted_variable("joined_buffer")
    return {sf: VectorizedSumfactKernel(kernels=tuple(kernels),
                                        horizontal_width=horizontal,
                                        vertical_width=vertical,
                                        buffer=buffer,
                                        ) for sf in sumfacts}