Skip to content
Snippets Groups Projects
Commit 444ce6ca authored by René Heß's avatar René Heß
Browse files

[skip ci][WIP] Tensor contraction reordering transformation

This commit includes some ugly code that needs to be cleaned up!
parent d8df729e
No related branches found
No related tags found
No related merge requests found
import loopy as lp
import pymbolic.primitives as prim
import islpy as isl
from dune.codegen.loopy.transformations.remove_reductions import remove_all_reductions
from dune.codegen.pdelab.geometry import world_dimension
def move_zero_assignment_up(knl, move_up_inames):
# Find the instruction we want to move around
cond = lp.match.Tagged('set_zero')
instructions = lp.find_instructions(knl, cond)
move_iname_set = set(map(lambda x: prim.Variable(x), move_up_inames))
instr = None
for i in instructions:
instr_iname_set = set(i.assignee.index_tuple)
if move_iname_set.issubset(instr_iname_set):
# There should be only one matching instruction
assert (instr==None)
instr = i
assert (instr!=None)
# Remove it
knl = lp.remove_instructions(knl, set([instr.id]))
# Create loop domains: In order to move it upwards we need to create
# additional loops
iname_appendix = '_move_up'
domains = knl.domains
for iname in move_up_inames:
# Find loop bound for this iname
for dom in domains:
if iname in dom.get_var_names(isl.dim_type.set):
# index = dom.get_var_names(isl.dim_type.set).index(iname)
# TODO: Noch unklar wie man die Loop bound aus isl rausbekommt.
todo_begin = str(dom).find(iname + ' <=') + len(iname) + 4
todo_end = todo_begin + str(dom)[todo_begin:].find(' ')
loop_bound = int(str(dom)[todo_begin:todo_end]) + 1
break
domain = "{{ [{0}] : 0<={0}<{1} }}".format(iname + iname_appendix, loop_bound)
domain = lp.kernel.creation.parse_domains(domain, {})
domains = domains + domain
# Create tuple of correct inames for usage in subscript below
indices = list(instr.assignee.index_tuple)
for i in range(len(indices)):
if indices[i].name in move_up_inames:
indices[i] = prim.Variable(indices[i].name + iname_appendix)
indices = tuple(indices)
# The new instructions needs to lie within those inames
within_inames = []
for i in indices:
within_inames.append(i.name)
# Create new instruction
assignee = prim.Subscript(instr.assignee.aggregate, indices)
instructions = []
instructions.append(instr.copy(assignee=assignee,
within_inames=frozenset(within_inames)))
knl = knl.copy(instructions=knl.instructions + instructions,
domains=domains)
# Add dependency to inner assignment instructions
cond = lp.match.Tagged('assignment')
assignment_instructions = lp.find_instructions(knl, cond)
instr = None
for i in assignment_instructions:
instr_iname_set = set(i.assignee.index_tuple)
if move_iname_set.issubset(instr_iname_set):
# There should be only one matching instruction
assert (instr==None)
instr = i
id_zero = instructions[0].id
cond = lp.match.Id(instr.id)
knl = lp.add_dependency(knl, cond, id_zero)
return knl
def reorder_loops_in_tensor_contraction(knl, iname_order):
"""Reorder the loop nest of the tensor contractions
iname_order is a string that specifies the loop order. We use the following convention:
Each contraction in the sum factorization kernel has the form 'ij,jkl->kli'
using einsum notation from numpy. iname_order should be a string like
'iklj' if the loops should be done in order i, k, l, j.
In the sum factorization kernel itself those inames are called:
sf_out_inames_2_* : l
sf_out_inames_1_* : k
sf_out_inames_0_* : i
red_* : j
where * represents the current direction (0,1,2 for 3D problems).
TODO: Maybe also support a list of the inames above?
TODO: Different order for different direction? Could make sense when we use
fastdg and a broadcast since the first contraction has a smaller input
matrix.
"""
dim = world_dimension()
# TODO: In principle there is no need to be dimension dependent. I'm just
# not sure how to pass the iname_order in the general case. This probably
# needs a rework anyway so I just do the 3D case first.
assert dim==3
knl = remove_all_reductions(knl)
# TODO: Doc after rewrite
reduction_iname = 'j'
iname_dict = { 'l' : 'sf_out_inames_2',
'k' : 'sf_out_inames_1',
'i' : 'sf_out_inames_0',
'j' : 'sf_red'}
reduction_index = iname_order.index(reduction_iname)
move_up_inames = list(map(lambda x: iname_dict[x], iname_order[reduction_index+1:]))
# cond = lp.match.Tagged('set_zero')
cond = lp.match.Tagged('assignment')
instructions = lp.find_instructions(knl, cond)
for instr in instructions:
inames = tuple(map(lambda x: x.name, instr.assignee.index_tuple))
current_move_up_inames = []
for i in inames:
for j in move_up_inames:
if i.find(j) >= 0:
current_move_up_inames.append(i)
knl = move_zero_assignment_up(knl, current_move_up_inames)
# TODO
#
# Finde the number appended to the inames of this contraction by taking
# all the number starting from the last '_'. There is definitely a more
# elegant way to find that ;).
sf_iname_index = int(inames[0][len(inames[0]) - inames[0][::-1].find('_'):])
reduction_iname = 'sf_red_{}'.format(sf_iname_index)
prefered_iname_order = []
for i in inames:
if i not in current_move_up_inames and i.find('vec') == -1:
prefered_iname_order.append(i)
prefered_iname_order.append(reduction_iname)
for i in current_move_up_inames:
prefered_iname_order.append(i)
prefered_iname_order = tuple(prefered_iname_order)
knl = lp.prioritize_loops(knl, prefered_iname_order)
return knl
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment