Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-codegen
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Christian Heinigk
dune-codegen
Commits
57069224
Commit
57069224
authored
5 years ago
by
René Heß
Browse files
Options
Downloads
Patches
Plain Diff
[skip ci] Loop reordering with accumulation variable
parent
29b60014
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/dune/codegen/sumfact/transformations.py
+113
-1
113 additions, 1 deletion
python/dune/codegen/sumfact/transformations.py
with
113 additions
and
1 deletion
python/dune/codegen/sumfact/transformations.py
+
113
−
1
View file @
57069224
...
...
@@ -4,7 +4,9 @@ import loopy as lp
import
pymbolic.primitives
as
prim
import
islpy
as
isl
from
dune.codegen.generation
import
get_global_context_value
from
dune.codegen.generation
import
(
get_counted_variable
,
get_global_context_value
,
)
from
dune.codegen.loopy.transformations.remove_reductions
import
remove_all_reductions
from
dune.codegen.options
import
get_form_option
,
get_option
from
dune.codegen.pdelab.geometry
import
world_dimension
...
...
@@ -170,6 +172,115 @@ def reorder_loops_in_tensor_contraction(kernel, iname_order):
return
kernel
def
reorder_loops_in_tensor_contraction_with_accumulation_variable
(
kernel
,
iname_order
):
dim
=
world_dimension
()
assert
dim
==
3
# kernel = remove_all_reductions(kernel)
kernel
=
reorder_loops_in_tensor_contraction
(
kernel
,
iname_order
)
cond
=
lp
.
match
.
Tagged
(
'
set_zero
'
)
for
instr
in
lp
.
find_instructions
(
kernel
,
cond
):
assert
len
(
instr
.
depends_on
)
==
0
# Depending on this instruction
depending
=
[]
for
i
in
kernel
.
instructions
:
if
instr
.
id
in
i
.
depends_on
:
depending
.
append
(
i
.
id
)
assert
len
(
depending
)
==
1
active_inames
=
[
i
.
name
.
endswith
(
'
move_up
'
)
for
i
in
instr
.
assignee
.
index
]
from
loopy.kernel.array
import
VectorArrayDimTag
agg
=
kernel
.
temporary_variables
[
instr
.
assignee
.
aggregate
.
name
]
if
isinstance
(
agg
.
dim_tags
[
-
1
],
VectorArrayDimTag
):
active_inames
[
-
1
]
=
True
# Instead of setting the variable itself to zero we set an accumulation
# variable to zero
kernel
=
lp
.
remove_instructions
(
kernel
,
set
([
instr
.
id
]))
accum_variable
=
get_counted_variable
(
'
accum_variable
'
)
accum_init_inames
=
tuple
(
i
for
(
i
,
j
)
in
zip
(
instr
.
assignee
.
index
,
active_inames
)
if
j
)
assignee
=
prim
.
Subscript
(
prim
.
Variable
(
accum_variable
,),
accum_init_inames
)
accum_init_id
=
instr
.
id
+
'
_accum_init
'
accum_init_instr
=
lp
.
Assignment
(
assignee
,
0
,
within_inames
=
instr
.
within_inames
,
id
=
accum_init_id
,
tags
=
(
'
accum_variable
'
,)
)
kernel
=
kernel
.
copy
(
instructions
=
kernel
.
instructions
+
[
accum_init_instr
,])
# Restore dependencies
for
dep
in
depending
:
match
=
lp
.
match
.
Id
(
dep
)
kernel
=
lp
.
add_dependency
(
kernel
,
match
,
accum_init_id
)
# Make accumulation variable a temporary_variable of this kernel
#
# Create dim tags for accum variable
dim_tags
=
'
,
'
.
join
([
'
f
'
]
*
sum
(
active_inames
))
if
isinstance
(
agg
.
dim_tags
[
-
1
],
VectorArrayDimTag
):
dim_tags
=
'
,
'
.
join
([
'
f
'
]
*
(
sum
(
active_inames
)
-
1
))
+
"
,vec
"
# Create shape for accum variable
shape
=
tuple
(
i
for
(
i
,
j
)
in
zip
(
agg
.
shape
,
active_inames
)
if
j
)
from
dune.codegen.loopy.temporary
import
DuneTemporaryVariable
var
=
{
accum_variable
:
DuneTemporaryVariable
(
accum_variable
,
dtype
=
agg
.
dtype
,
shape
=
shape
,
dim_tags
=
dim_tags
,
managed
=
True
)}
kernel
.
temporary_variables
.
update
(
var
)
# Accumulate in accumulate variable
#
# Find accumulation instruction
accum_instr
=
lp
.
find_instructions
(
kernel
,
lp
.
match
.
Id
(
depending
[
0
]))[
0
]
assert
accum_instr
.
assignee
==
accum_instr
.
expression
.
children
[
0
]
# Dependencies
depends_on
=
accum_instr
.
depends_on
depending
=
[]
for
i
in
kernel
.
instructions
:
if
accum_instr
.
id
in
i
.
depends_on
:
depending
.
append
(
i
.
id
)
# Replace with accumulation in accum_variable
kernel
=
lp
.
remove_instructions
(
kernel
,
set
([
accum_instr
.
id
]))
accum_inames
=
tuple
(
i
for
(
i
,
j
)
in
zip
(
accum_instr
.
assignee
.
index
,
active_inames
)
if
j
)
assignee
=
prim
.
Subscript
(
prim
.
Variable
(
accum_variable
,),
accum_inames
)
expression
=
prim
.
Sum
((
assignee
,
accum_instr
.
expression
.
children
[
1
]))
accum_id
=
accum_instr
.
id
+
'
_accumvar
'
new_accum_instr
=
lp
.
Assignment
(
assignee
,
expression
,
within_inames
=
accum_instr
.
within_inames
,
id
=
accum_id
,
depends_on
=
depends_on
,
)
kernel
=
kernel
.
copy
(
instructions
=
kernel
.
instructions
+
[
new_accum_instr
,])
# Assign accumulation result
#
# The reduction is already done
within_inames
=
frozenset
(
i
for
i
in
accum_instr
.
within_inames
if
'
red
'
not
in
i
)
assign_id
=
accum_instr
.
id
+
'
_assign
'
assign_instr
=
lp
.
Assignment
(
accum_instr
.
assignee
,
assignee
,
within_inames
=
within_inames
,
id
=
assign_id
,
depends_on
=
frozenset
([
accum_id
,]),
)
kernel
=
kernel
.
copy
(
instructions
=
kernel
.
instructions
+
[
assign_instr
,])
for
dep
in
depending
:
match
=
lp
.
match
.
Id
(
dep
)
kernel
=
lp
.
add_dependency
(
kernel
,
match
,
assign_id
)
return
kernel
def
tensor_contraction_loop_order_generator
(
kernel
):
dim
=
world_dimension
()
assert
dim
==
3
...
...
@@ -209,6 +320,7 @@ def autotune_tensor_contraction_loop_order(kernel, signature):
def
sumfact_performance_transformations
(
kernel
,
signature
):
if
kernel
.
name
.
startswith
(
'
sfimpl
'
):
# kernel = reorder_loops_in_tensor_contraction_with_accumulation_variable(kernel, "ljik")
# kernel = autotune_tensor_contraction_loop_order(kernel, signature)
pass
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment