Skip to content
Snippets Groups Projects
Commit 8933451e authored by René Heß's avatar René Heß
Browse files

[skip ci][WIP] Rewrite loop transformation with direct accumulation

Still missing: Handling of reduction with haddsubst!
parent 01284f79
No related branches found
No related tags found
No related merge requests found
......@@ -15,162 +15,14 @@ from dune.codegen.error import CodegenAutotuneError
from dune.codegen.sumfact.autotune import autotune_realization
def move_zero_assignment_up(kernel, move_up_inames):
if len(move_up_inames) == 0:
return kernel
# Find the instruction we want to move around
cond = lp.match.Tagged('set_zero')
instructions = lp.find_instructions(kernel, cond)
move_iname_set = set(map(lambda x: prim.Variable(x), move_up_inames))
instr = None
for i in instructions:
instr_iname_set = set(i.assignee.index_tuple)
if move_iname_set.issubset(instr_iname_set):
# There should be only one matching instruction
assert instr is None
instr = i
assert instr is not None
# Remove it
kernel = lp.remove_instructions(kernel, set([instr.id]))
# Create loop domains: In order to move it upwards we need to create
# additional loops
iname_appendix = '_move_up'
domains = kernel.domains
for iname in move_up_inames:
# Find loop bound for this iname
for dom in domains:
if iname in dom.get_var_names(isl.dim_type.set):
# index = dom.get_var_names(isl.dim_type.set).index(iname)
# TODO: Noch unklar wie man die Loop bound aus isl rausbekommt.
todo_begin = str(dom).find(iname + ' =') + len(iname) + 3
if todo_begin == len(iname) + 3 - 1:
todo_begin = str(dom).find(iname + ' <=') + len(iname) + 4
todo_end = todo_begin + str(dom)[todo_begin:].find(' ')
loop_bound = int(str(dom)[todo_begin:todo_end]) + 1
break
domain = "{{ [{0}] : 0<={0}<{1} }}".format(iname + iname_appendix, loop_bound)
domain = lp.kernel.creation.parse_domains(domain, {})
domains = domains + domain
# Create tuple of correct inames for usage in subscript below
indices = list(instr.assignee.index_tuple)
for i in range(len(indices)):
if indices[i].name in move_up_inames:
indices[i] = prim.Variable(indices[i].name + iname_appendix)
indices = tuple(indices)
# The new instructions needs to lie within those inames
within_inames = []
for i in indices:
within_inames.append(i.name)
# Create new instruction
assignee = prim.Subscript(instr.assignee.aggregate, indices)
instructions = []
instructions.append(instr.copy(assignee=assignee,
within_inames=frozenset(within_inames)))
kernel = kernel.copy(instructions=kernel.instructions + instructions,
domains=domains)
# Add dependency to inner assignment instructions
cond = lp.match.Tagged('assignment')
assignment_instructions = lp.find_instructions(kernel, cond)
instr = None
for i in assignment_instructions:
instr_iname_set = set(i.assignee.index_tuple)
if move_iname_set.issubset(instr_iname_set):
# There should be only one matching instruction
assert instr is None
instr = i
id_zero = instructions[0].id
cond = lp.match.Id(instr.id)
kernel = lp.add_dependency(kernel, cond, id_zero)
return kernel
def _reorder_loops_in_tensor_contraction_direct(kernel, iname_order):
"""Reorder the loop nest of the tensor contractions
iname_order is a string that specifies the loop order. We use the following convention:
Each contraction in the sum factorization kernel has the form 'ij,jkl->kli'
using einsum notation from numpy. iname_order should be a string like
'iklj' if the loops should be done in order i, k, l, j.
Without transformations those loops will be done in the order lkij.
In the sum factorization kernel itself those inames are called:
sf_out_inames_2_* : l
sf_out_inames_1_* : k
sf_out_inames_0_* : i
red_* : j
where * represents the current direction (0,1,2 for 3D problems).
TODO: Maybe also support a list of the inames above?
TODO: Different order for different direction? Could make sense when we use
fastdg and a broadcast since the first contraction has a smaller input
matrix.
"""
dim = world_dimension()
# TODO: In principle there is no need to be dimension dependent. I'm just
# not sure how to pass the iname_order in the general case. This probably
# needs a rework anyway so I just do the 3D case first.
assert dim == 3
kernel = remove_all_reductions(kernel)
# TODO: Doc after rewrite
reduction_iname = 'j'
iname_dict = {'l': 'sf_out_inames_2',
'k': 'sf_out_inames_1',
'i': 'sf_out_inames_0',
'j': 'sf_red'}
reduction_index = iname_order.index(reduction_iname)
move_up_inames = list(map(lambda x: iname_dict[x], iname_order[reduction_index + 1:]))
# cond = lp.match.Tagged('set_zero')
cond = lp.match.Tagged('assignment')
instructions = lp.find_instructions(kernel, cond)
for instr in instructions:
inames = tuple(map(lambda x: x.name, instr.assignee.index_tuple))
current_move_up_inames = []
for i in inames:
for j in move_up_inames:
if i.find(j) >= 0:
current_move_up_inames.append(i)
kernel = move_zero_assignment_up(kernel, current_move_up_inames)
# TODO: There should be a better method than searching the string for
# 'sf_red'. Unfortunately there are sometimes Call instructions due to
# broadcasts. That makes different ways difficult.
regex = re.compile('sf_red_([0-9]*)')
reduction_index = set(regex.findall(str(instr)))
assert len(reduction_index) == 1
reduction_index = reduction_index.pop()
reduction_iname = 'sf_red_{}'.format(reduction_index)
prefered_iname_order = []
for i in inames:
if i not in current_move_up_inames and i.find('vec') == -1:
prefered_iname_order.append(i)
prefered_iname_order.append(reduction_iname)
for i in current_move_up_inames:
prefered_iname_order.append(i)
prefered_iname_order = tuple(prefered_iname_order)
kernel = lp.prioritize_loops(kernel, prefered_iname_order)
return kernel
def _current_iname_order(current_inames, new_iname_order):
"""Sort the inames for this contraction according to new_iname order"""
current_iname_order = []
for i in new_iname_order:
for j in current_inames:
if i in j:
current_iname_order.append(j)
return current_iname_order
def _get_inames_of_reduction(instr, iname_permutation):
......@@ -211,77 +63,65 @@ def _get_inames_of_reduction(instr, iname_permutation):
return outer_inames, reduction_iname, inner_inames, vec_inames
def _duplicate_assignment_inames(kernel, match):
instructions = lp.find_instructions(kernel, match)
for instr in instructions:
assert isinstance(instr, lp.kernel.instruction.Assignment)
def _reorder_loops_in_tensor_contraction_direct(kernel, iname_permutation):
"""Reorder the loop nests of a tensor contraction accumulating directly in the data structure"""
dim = world_dimension()
# Dependencies
match = lp.match.Id(instr.id)
depends_on = instr.depends_on
depending = []
for i in kernel.instructions:
if instr.id in i.depends_on:
depending.append(i.id)
# Nothing to do if permutation is identity
if iname_permutation == tuple(range(dim + 1)):
return kernel
# Remove instruction
kernel = lp.remove_instructions(kernel, set([instr.id]))
# Use names used in sum factorization kernel (without the index that distinguishes the different directions)
default_iname_order = ['sf_out_inames_{}'.format(dim - 1 - i) for i in range(dim)] + ['sf_red']
from dune.codegen.sumfact.permutation import permute_backward
new_iname_order = permute_backward(default_iname_order, iname_permutation)
def _duplicate_name(iname):
iname_appendix = '_duplicate'
return iname.name + iname_appendix
kernel = remove_all_reductions(kernel)
agg_variable = kernel.temporary_variables[instr.assignee.aggregate.name]
vectorized = isinstance(agg_variable.dim_tags[-1], lp.kernel.array.VectorArrayDimTag)
if vectorized:
inames = instr.assignee.index_tuple[:-1]
for instr in kernel.instructions:
# Inames used in this reduction
outer_inames, reduction_iname, inner_inames, vec_inames = _get_inames_of_reduction(instr,
iname_permutation)
if reduction_iname:
current_inames = outer_inames + [reduction_iname] + inner_inames + vec_inames
else:
inames = instr.assignee.index_tuple
# Create new domains
domains = kernel.domains
new_domains = []
for iname in inames:
# Find loop bound for the corresponding domain
for dom in domains:
if iname.name in dom.get_var_names(isl.dim_type.set):
# TODO There must be better way to get this information using isl
str_begin = str(dom).find(iname.name + ' =') + len(iname.name) + 3
if str_begin == len(iname.name) + 3 - 1:
str_begin = str(dom).find(iname.name + ' <=') + len(iname.name) + 4
str_end = str_begin + str(dom)[str_begin:].find(' ')
loop_bound = int(str(dom)[str_begin:str_end]) + 1
break
# Create new domain
domain = "{{ [{0}] : 0<={0}<{1} }}".format(_duplicate_name(iname), loop_bound)
domain = lp.kernel.creation.parse_domains(domain, {})
new_domains.append(domain)
for domain in new_domains:
domains = domains + domain
# Create new inames
new_inames = tuple(prim.Variable(_duplicate_name(i)) for i in inames)
if vectorized:
new_inames = new_inames + (instr.assignee.index_tuple[-1],)
current_inames = outer_inames + inner_inames + vec_inames
current_iname_order = _current_iname_order(current_inames,
new_iname_order)
# Create new instruction within the new inames
assignee = prim.Subscript(instr.assignee.aggregate, new_inames)
new_instruction = instr.copy(assignee=assignee,
depends_on=depends_on,
within_inames=frozenset([i.name for i in new_inames]))
kernel = kernel.copy(instructions=kernel.instructions + [new_instruction],
domains=domains)
if iname_permutation[-1] == dim:
kernel = lp.prioritize_loops(kernel, tuple(current_iname_order))
continue
# Restore dependencies
for dep in depending:
match = lp.match.Id(dep)
kernel = lp.add_dependency(kernel, match, new_instruction.id)
# palpo TODO
if 'haddsubst' in str(instr):
continue
# if 'assignment' in instr.tags or isinstance(instr.assignee, prim.Variable):
if 'assignment' in instr.tags:
# Set loop priority
lp.prioritize_loops(kernel, current_iname_order)
elif 'set_zero' in instr.tags:
# Duplicate inames and prioritize loops
duplicate_inames = tuple(i for i in inner_inames)
match = lp.match.Id(instr.id)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
# palpo TODO prioritize!
else:
# palpo TODO 2D?
# assert reduction_iname is None
# Duplicate inames and prioritize loops
duplicate_inames = tuple(i for i in inner_inames)
match = lp.match.Id(instr.id)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
# palpo TODO prioritize!
return kernel
def _reorder_loops_in_tensor_contraction_accum(kernel, iname_permutation):
"""Reorder the loop nests of a tensor contraction using an accumulation variable"""
dim = world_dimension()
# Nothing to do if permutation is identity
......@@ -293,33 +133,21 @@ def _reorder_loops_in_tensor_contraction_accum(kernel, iname_permutation):
from dune.codegen.sumfact.permutation import permute_backward
new_iname_order = permute_backward(default_iname_order, iname_permutation)
# Get the real names with direction indices in the right order
def _current_new_iname_order(outer, reduction, inner, new_iname_order):
if reduction:
reduction = [reduction]
else:
reduction = []
all_inames = outer + reduction + inner
current_iname_order = []
for i in new_iname_order:
for j in all_inames:
if i in j:
current_iname_order.append(j)
return current_iname_order
for instr in kernel.instructions:
# Inames used in this reduction
outer_inames, reduction_iname, inner_inames, vec_inames = _get_inames_of_reduction(instr,
iname_permutation)
if reduction_iname:
current_inames = outer_inames + [reduction_iname] + inner_inames + vec_inames
else:
current_inames = outer_inames + inner_inames + vec_inames
# We can directly use lp.prioritize_loops if:
# - The reduction is the innermost loop
# - There is no reduction (eg reduced direction on faces)
if iname_permutation[-1] == dim or reduction_iname is None:
current_iname_order = _current_new_iname_order(outer_inames,
reduction_iname,
inner_inames,
new_iname_order)
current_iname_order = _current_iname_order(current_inames,
new_iname_order)
kernel = lp.prioritize_loops(kernel, tuple(current_iname_order))
continue
assert isinstance(instr.expression, lp.symbolic.Reduction)
......@@ -434,24 +262,27 @@ def _reorder_loops_in_tensor_contraction_accum(kernel, iname_permutation):
kernel = kernel.copy(temporary_variables=tv)
# Reordering loops only works if we duplicate some inames
duplicate_inames = tuple(i.name for i in accum_init_inames)
if vectorized:
duplicate_inames = duplicate_inames[:-1]
duplicate_inames = tuple(inner_inames)
match = lp.match.Id(accum_init_id)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
match_inames = tuple(lp.find_instructions(kernel, match)[0].within_inames)
current_iname_order = _current_iname_order(match_inames, new_iname_order)
kernel = lp.prioritize_loops(kernel, tuple(current_iname_order))
# Reorder loops of the assignment of the result
if 'haddsubst' not in str(instr):
match = lp.match.Id(assign_id)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
else:
match = lp.match.Id(assignment.id)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
kernel = lp.duplicate_inames(kernel, duplicate_inames, match)
match_inames = tuple(lp.find_instructions(kernel, match)[0].within_inames)
current_iname_order = _current_iname_order(match_inames, new_iname_order)
kernel = lp.prioritize_loops(kernel, tuple(current_iname_order))
# Change loop order
current_iname_order = _current_new_iname_order(outer_inames,
reduction_iname,
inner_inames,
new_iname_order)
current_iname_order = _current_iname_order(current_inames,
new_iname_order)
kernel = lp.prioritize_loops(kernel, tuple(current_iname_order))
return kernel
......@@ -509,8 +340,6 @@ def reorder_loops_in_tensor_contraction(kernel, iname_permutation, accum_variabl
kernel = _reorder_loops_in_tensor_contraction_accum(kernel, iname_permutation)
return kernel
else:
# TODO: Need to adapt this!
assert False
kernel = _reorder_loops_in_tensor_contraction_direct(kernel, iname_permutation)
return kernel
......@@ -524,10 +353,11 @@ def tensor_contraction_loop_order_generator(kernel):
if permutation[0] == dim:
continue
new_kernel = reorder_loops_in_tensor_contraction(kernel, permutation, True)
new_kernel = reorder_loops_in_tensor_contraction(kernel, permutation, accum_variable=True)
yield new_kernel, ['reorder_loops_in_tensor_contraction_{}_True'.format(permutation)]
# new_kernel = reorder_loops_in_tensor_contraction(kernel, permutation, False)
# palpo TODO
# new_kernel = reorder_loops_in_tensor_contraction(kernel, permutation, accum_variable=False)
# yield new_kernel, ['reorder_loops_in_tensor_contraction_{}_False'.format(permutation),]
......@@ -560,10 +390,13 @@ def sumfact_performance_transformations(kernel, signature):
# # TODO
# dim = world_dimension()
# if dim == 2:
# kernel = reorder_loops_in_tensor_contraction(kernel, (2,0,1), True)
# # assert False
# kernel = reorder_loops_in_tensor_contraction(kernel, (2, 0, 1), True)
# # kernel = reorder_loops_in_tensor_contraction(kernel, (2, 0, 1), False)
# else:
# kernel = reorder_loops_in_tensor_contraction(kernel, (3,2,0,1), True)
# # kernel = reorder_loops_in_tensor_contraction(kernel, (1,2,0,3), True)
# kernel = reorder_loops_in_tensor_contraction(kernel, (3, 2, 0, 1), True)
# # kernel = reorder_loops_in_tensor_contraction(kernel, (1, 2, 0, 3), True)
# # kernel = reorder_loops_in_tensor_contraction(kernel, (3, 2, 0, 1), False)
kernel = autotune_tensor_contraction_loop_order(kernel, signature)
pass
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment