Skip to content
Snippets Groups Projects
Commit b9a473dc authored by Dominic Kempf's avatar Dominic Kempf
Browse files

Fix neumann boundary poisson and symdiff

parent 38dbd2a7
No related branches found
No related tags found
No related merge requests found
......@@ -267,10 +267,14 @@ class AccumulationSpace(Record):
return (self.restriction,)
def determine_accumulation_space(expr, number):
def determine_accumulation_space(expr, number, measure):
from dune.perftool.ufl.modified_terminals import extract_modified_arguments
args = extract_modified_arguments(expr, argnumber=number)
if measure == 'exterior_facet':
for ma in args:
ma.restriction = Restriction.NEGATIVE
# If this is a residual term we return a dummy object
if len(args) == 0:
return AccumulationSpace()
......@@ -308,42 +312,44 @@ def determine_accumulation_space(expr, number):
)
def boundary_predicates():
# # Maybe wrap this instruction into a condiditional. This mostly happens with mixed boundary conditions
# if self.subdomain_id not in ['everywhere', 'otherwise']:
# # We need to reconstruct the subdomain_data parameter of the measure
# # I am *totally* confused as to why this information is not at hand anyway,
# # but conversation with Martin pointed me to dolfin.fem.assembly where this
# # is done in preprocessing with the limitation of only one possible type of
# # modified measure per integral type.
#
# # Get the original form and inspect the present measures
# from dune.perftool.generation import get_global_context_value
# original_form = get_global_context_value("formdata").original_form
#
# sd = original_form.subdomain_data()
# assert len(sd) == 1
# subdomains, = list(sd.values())
# domain, = list(sd.keys())
# for k in list(subdomains.keys()):
# if subdomains[k] is None:
# del subdomains[k]
#
# # Finally extract the original subdomain_data (which needs to be present!)
# assert self.measure in subdomains
# subdomain_data = subdomains[self.measure]
#
# # Determine the name of the parameter function
# name = get_global_context_value("data").object_names[id(subdomain_data)]
#
# # Trigger the generation of code for this thing in the parameter class
# from ufl.checks import is_cellwise_constant
# cellwise_constant = is_cellwise_constant(o)
# from dune.perftool.pdelab.parameter import intersection_parameter_function
# intersection_parameter_function(name, subdomain_data, cellwise_constant, t='int')
#
# predicates = predicates.union(['{} == {}'.format(name, self.subdomain_id)])
return frozenset([])
def boundary_predicates(expr, measure, subdomain_id):
predicates = frozenset([])
if subdomain_id not in ['everywhere', 'otherwise']:
# We need to reconstruct the subdomain_data parameter of the measure
# I am *totally* confused as to why this information is not at hand anyway,
# but conversation with Martin pointed me to dolfin.fem.assembly where this
# is done in preprocessing with the limitation of only one possible type of
# modified measure per integral type.
# Get the original form and inspect the present measures
from dune.perftool.generation import get_global_context_value
original_form = get_global_context_value("formdata").original_form
sd = original_form.subdomain_data()
assert len(sd) == 1
subdomains, = list(sd.values())
domain, = list(sd.keys())
for k in list(subdomains.keys()):
if subdomains[k] is None:
del subdomains[k]
# Finally extract the original subdomain_data (which needs to be present!)
assert measure in subdomains
subdomain_data = subdomains[measure]
# Determine the name of the parameter function
name = get_global_context_value("data").object_names[id(subdomain_data)]
# Trigger the generation of code for this thing in the parameter class
from ufl.checks import is_cellwise_constant
cellwise_constant = is_cellwise_constant(expr)
from dune.perftool.pdelab.parameter import intersection_parameter_function
intersection_parameter_function(name, subdomain_data, cellwise_constant, t='int')
predicates = predicates.union(['{} == {}'.format(name, subdomain_id)])
return predicates
@iname
......@@ -355,7 +361,7 @@ def grad_iname(ma):
return name
def generate_accumulation_instruction(visitor, accterm):
def generate_accumulation_instruction(visitor, accterm, measure, subdomain_id):
# First we do the tree traversal to get a pymbolic expression representing this expression
pymbolic_expr = visitor(accterm.term)
......@@ -376,14 +382,14 @@ def generate_accumulation_instruction(visitor, accterm):
pymbolic_expr = Product((pymbolic_expr, test_expr))
# Collect the lfs and lfs indices for the accumulate call
test_lfs = determine_accumulation_space(accterm.argument.expr, 0)
test_lfs = determine_accumulation_space(accterm.argument.expr, 0, measure)
# In the jacobian case, also determine the space for the ansatz space
ansatz_lfs = determine_accumulation_space(accterm.term, 1)
ansatz_lfs = determine_accumulation_space(accterm.term, 1, measure)
from dune.perftool.pdelab.argument import name_accumulation_variable
accumvar = name_accumulation_variable((ansatz_lfs.get_restriction() + test_lfs.get_restriction()))
predicates = boundary_predicates()
predicates = boundary_predicates(accterm.term, measure, subdomain_id)
rank = 1 if ansatz_lfs.lfs is None else 2
......@@ -447,7 +453,7 @@ def generate_kernel(integrals):
# Iterate over the terms and generate a kernel
for term in accterms:
generate_accumulation_instruction(visitor, term)
generate_accumulation_instruction(visitor, term, measure, subdomain_id)
# Extract the information, which is needed to create a loopy kernel.
# First extracting it, might be useful to alter it before kernel generation.
......
......@@ -58,7 +58,8 @@ def split_into_accumulation_terms(expr):
# 4) Further split according to trial function in jacobian terms
if all_jacobian_args:
for jac_arg in all_jacobian_args:
pass
if not isinstance(replace_expr, Zero):
ret.append(AccumulationTerm(replace_expr, test_arg))
else:
if not isinstance(replace_expr, Zero):
ret.append(AccumulationTerm(replace_expr, test_arg))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment