Skip to content
Snippets Groups Projects
Commit e7470548 authored by Dominic Kempf's avatar Dominic Kempf
Browse files

Implement handlers to allow generation of correct penalty term

parent f7909dba
No related branches found
No related tags found
No related merge requests found
dim = 3
x = SpatialCoordinate(cell)
g = x[0]*x[0] + x[1]*x[1] + x[2]*x[2]
......@@ -13,17 +14,22 @@ v = TestFunction(V)
n = FacetNormal(cell)('+')
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
theta = -1.0
r = (inner(A*grad(u), grad(v)) + (c*u-f)*v)*dx \
+ inner(n, A*avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
+ theta*jump(u)*inner(A*avg(grad(v)), n)*dS \
- inner(n, A*grad(u))*v*ds \
+ gamma*u*v*ds \
+ gamma_ext*u*v*ds \
- theta*u*inner(A*grad(v), n)*ds \
+ theta*g*inner(A*grad(v), n)*ds \
- gamma*g*v*ds
- gamma_ext*g*v*ds
forms = [r]
dim = 3
x = SpatialCoordinate(cell)
f = -6.
g = x[0]*x[0] + x[1]*x[1] + x[2]*x[2]
......@@ -9,18 +10,23 @@ v = TestFunction(V)
n = FacetNormal(cell)('+')
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
theta = 1.0
r = inner(grad(u), grad(v))*dx \
+ inner(n, avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
+ theta*jump(u)*inner(avg(grad(v)), n)*dS \
- inner(n, grad(u))*v*ds \
+ gamma*u*v*ds \
+ gamma_ext*u*v*ds \
- theta*u*inner(grad(v), n)*ds \
- f*v*dx \
+ theta*g*inner(grad(v), n)*ds \
- gamma*g*v*ds
- gamma_ext*g*v*ds
forms = [r]
......@@ -118,7 +118,7 @@ class DuneCExpressionToCodeMapper(CExpressionToCodeMapper):
result = self.rec(children.pop(), PREC_NONE)
while children:
result = "std::%s(%s, %s)" % (what,
result = "%s(%s, %s)" % (what,
self.rec(children.pop(), PREC_NONE),
result)
......
......@@ -11,6 +11,8 @@ from dune.perftool.pdelab.basis import (pymbolic_basis,
pymbolic_reference_gradient,
)
from dune.perftool.pdelab.geometry import (dimension_iname,
name_cell_volume,
name_facet_area,
name_facet_jacobian_determinant,
name_jacobian_determinant,
name_jacobian_inverse_transposed,
......@@ -112,6 +114,12 @@ class PDELabInterface(object):
def name_unit_outer_normal(self):
return name_unit_outer_normal()
def name_cell_volume(self, restriction):
return name_cell_volume(restriction)
def name_facet_area(self):
return name_facet_area()
#
# Quadrature related generator functions
#
......
......@@ -405,3 +405,33 @@ def to_global(local):
name = get_pymbolic_basename(local) + "_global"
apply_to_global_transformation(name, local)
return prim.Variable(name)
def define_cell_volume(name, restriction):
geo = name_cell_geometry(restriction)
temporary_variable(name, shape=())
code = "{} = {}.volume();".format(name, geo)
return quadrature_preamble(code,
assignees=frozenset({name}),
)
def name_cell_volume(restriction):
name = restricted_name("volume", restriction)
define_cell_volume(name, restriction)
return name
def define_facet_area(name):
geo = name_intersection_geometry()
temporary_variable(name, shape=())
code = "{} = {}.volume();".format(name, geo)
return quadrature_preamble(code,
assignees=frozenset({name}),
)
def name_facet_area():
name = "area"
define_facet_area(name)
return name
""" Preprocessing algorithms for UFL forms """
import ufl.classes as uc
def preprocess_form(form):
from ufl.classes import (FacetJacobianDeterminant,
FacetNormal,
JacobianDeterminant,
JacobianInverse,
)
def preprocess_form(form):
from ufl.algorithms import compute_form_data
formdata = compute_form_data(form,
do_apply_function_pullbacks=True,
do_apply_geometry_lowering=True,
do_apply_integral_scaling=True,
preserve_geometry_types=(FacetJacobianDeterminant,
FacetNormal,
JacobianDeterminant,
JacobianInverse,
preserve_geometry_types=(uc.CellVolume,
uc.FacetArea,
uc.FacetJacobianDeterminant,
uc.FacetNormal,
uc.JacobianDeterminant,
uc.JacobianInverse,
)
)
......
......@@ -265,6 +265,12 @@ class UFL2LoopyVisitor(ModifiedTerminalTracker):
raise NotImplementedError("Power function not really implemented")
def max_value(self, o):
return prim.Max(tuple(self.call(op) for op in o.ufl_operands))
def min_value(self, o):
return prim.Min(tuple(self.call(op) for op in o.ufl_operands))
#
# Handler for conditionals, use pymbolic base implementation
#
......@@ -360,6 +366,16 @@ class UFL2LoopyVisitor(ModifiedTerminalTracker):
def facet_jacobian_determinant(self, o):
return Variable(self.interface.name_facet_jacobian_determinant())
def cell_volume(self, o):
restriction = self.restriction
if self.measure == 'exterior_facet':
restriction = Restriction.NEGATIVE
return prim.Variable(self.interface.name_cell_volume(restriction))
def facet_area(self, o):
return prim.Variable(self.interface.name_facet_area())
#
# Equality/Hashability of the visitor
# In order to pass this visitor into (cached) generator functions, it is beneficial
......
......@@ -11,20 +11,24 @@ v = TestFunction(V)
n = FacetNormal(cell)('+')
# penalty factor
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
# SIPG: -1.0, IIPG: 0.0, NIPG: 1.0
theta = 1.0
r = inner(grad(u), grad(v))*dx \
+ inner(n, avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
- theta*jump(u)*inner(avg(grad(v)), n)*dS \
- inner(n, grad(u))*v*ds \
+ gamma*u*v*ds \
+ gamma_ext*u*v*ds \
+ theta*u*inner(grad(v), n)*ds \
- f*v*dx \
- theta*g*inner(grad(v), n)*ds \
- gamma*g*v*ds
- gamma_ext*g*v*ds
forms = [r]
cell = triangle
degree = 1
dim = 2
x = SpatialCoordinate(cell)
c = (0.5-x[0])**2 + (0.5-x[1])**2
g = exp(-1.*c)
f = 4*(1.-c)*g
V = FiniteElement("DG", cell, 1)
V = FiniteElement("DG", cell, degree)
u = TrialFunction(V)
v = TestFunction(V)
......@@ -13,20 +15,24 @@ v = TestFunction(V)
n = FacetNormal(cell)('+')
# penalty factor
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
# SIPG: -1.0, IIPG: 0.0, NIPG: 1.0
theta = 1.0
r = inner(grad(u), grad(v))*dx \
+ inner(n, avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
- theta*jump(u)*inner(avg(grad(v)), n)*dS \
- inner(n, grad(u))*v*ds \
+ gamma*u*v*ds \
+ gamma_ext*u*v*ds \
+ theta*u*inner(grad(v), n)*ds \
- f*v*dx \
- theta*g*inner(grad(v), n)*ds \
- gamma*g*v*ds
- gamma_ext*g*v*ds
forms = [r]
dim = 3
degree = 1
cell = triangle
x = SpatialCoordinate(cell)
......@@ -8,7 +10,7 @@ sgn = conditional(x[1] > 0.5, 1., -1.)
j = -2.*sgn*(x[1]-0.5)*g
bctype = conditional(Or(x[1]<1e-8, x[1]>1.-1e-8), 0, 1)
V = FiniteElement("DG", cell, 1)
V = FiniteElement("DG", cell, degree)
u = TrialFunction(V)
v = TestFunction(V)
......@@ -18,21 +20,25 @@ n = FacetNormal(cell)('+')
ds = ds(subdomain_data=bctype)
# penalty factor
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
# SIPG: -1.0, IIPG: 0.0, NIPG: 1.0
theta = 1.0
r = inner(grad(u), grad(v))*dx \
+ inner(n, avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
- theta*jump(u)*inner(avg(grad(v)), n)*dS \
- inner(n, grad(u))*v*ds(1) \
+ gamma*u*v*ds(1) \
+ gamma_ext*u*v*ds(1) \
+ theta*u*inner(grad(v), n)*ds(1) \
- f*v*dx \
- theta*g*inner(grad(v), n)*ds(1) \
- gamma*g*v*ds(1) \
- gamma_ext*g*v*ds(1) \
- j*v*ds(0)
forms = [r]
dim = 2
degree = 1
cell = quadrilateral
x = SpatialCoordinate(cell)
......@@ -8,7 +10,7 @@ g = x[0]**2 + x[1]**2
c = 8.
f = -4.
V = FiniteElement("DG", cell, 1)
V = FiniteElement("DG", cell, degree)
u = TrialFunction(V)
v = TestFunction(V)
......@@ -16,20 +18,24 @@ v = TestFunction(V)
n = FacetNormal(cell)('+')
# penalty factor
gamma = 1.0
alpha = 1.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h_int = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h_int
# SIPG: -1.0, IIPG: 0.0, NIPG: 1.0
theta = 1.0
r = (inner(A*grad(u), grad(v)) + c*u*v)*dx \
+ inner(n, A*avg(grad(u)))*jump(v)*dS \
+ gamma*jump(u)*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
- theta*jump(u)*inner(A*avg(grad(v)), n)*dS \
- inner(n, A*grad(u))*v*ds \
+ gamma*u*v*ds \
+ gamma_ext*u*v*ds \
+ theta*u*inner(A*grad(v), n)*ds \
- f*v*dx \
- theta*g*inner(A*grad(v), n)*ds \
- gamma*g*v*ds
- gamma_ext*g*v*ds
forms = [r]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment