Skip to content
Snippets Groups Projects
base_data_element.py 17.4 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Any, Iterator, Optional, Tuple

import numpy as np
import torch


class BaseDataElement:
    """A base data structure interface of OpenMMlab.

    Data elements refer to predicted results or ground truth labels on a
    task, such as predicted bboxes, instance masks, semantic
    segmentation masks, etc. Because groundtruth labels and predicted results
    often have similar properties (for example, the predicted bboxes and the
    groundtruth bboxes), MMEngine uses the same abstract data interface to
    encapsulate predicted results and groundtruth labels, and it is recommended
    to use different name conventions to distinguish them, such as using
    ``gt_instances`` and ``pred_instances`` to distinguish between labels and
    predicted results. Additionally, we distinguish data elements at instance
    level, pixel level, and label level. Each of these types has its own
    characteristics. Therefore, MMEngine defines the base class
    ``BaseDataElement``, and implement ``InstanceData``, ``PixelData``, and
    ``LabelData`` inheriting from ``BaseDataElement`` to represent different
    types of ground truth labels or predictions.
    They are used as interfaces between different commopenets.


    The attributes in ``BaseDataElement`` are divided into two parts,
    the ``metainfo`` and the ``data`` respectively.

        - ``metainfo``: Usually contains the
          information about the image such as filename,
          image_shape, pad_shape, etc. The attributes can be accessed or
          modified by dict-like or object-like operations, such as
          ``.``(for data access and modification) , ``in``, ``del``,
          ``pop(str)``, ``get(str)``, ``metainfo_keys()``,
          ``metainfo_values()``, ``metainfo_items()``, ``set_metainfo()``(for
          set or change key-value pairs in metainfo).

        - ``data``: Annotations or model predictions are
          stored. The attributes can be accessed or modified by
          dict-like or object-like operations, such as
          ``.`` , ``in``, ``del``, ``pop(str)`` ``get(str)``, ``data_keys()``,
          ``data_values()``, ``data_items()``. Users can also apply tensor-like
          methods to all obj:``torch.Tensor`` in the ``data_fileds``,
          such as ``.cuda()``, ``.cpu()``, ``.numpy()``, , ``.to()``
          ``to_tensor()``, ``.detach()``, ``.numpy()``

    Args:
        meta_info (dict, optional): A dict contains the meta information
            of single image. such as ``dict(img_shape=(512, 512, 3),
            scale_factor=(1, 1, 1, 1))``. Defaults to None.
        data (dict, optional): A dict contains annotations of single image or
            model predictions. Defaults to None.

    Examples:
        >>> from mmengine.data import BaseDataElement
        >>> gt_instances = BaseDataElement()

        >>> bboxes = torch.rand((5, 4))
        >>> scores = torch.rand((5,))
        >>> img_id = 0
        >>> img_shape = (800, 1333)
        >>> gt_instances = BaseDataElement(
                metainfo=dict(img_id=img_id, img_shape=img_shape),
                data=dict(bboxes=bboxes, scores=scores))
        >>> gt_instances = BaseDataElement(dict(img_id=img_id,
                                                img_shape=(H, W)))
        # new
        >>> gt_instances1 = gt_instance.new(
                                metainfo=dict(img_id=1, img_shape=(640, 640)),
                                data=dict(bboxes=torch.rand((5, 4)),
                                          scores=torch.rand((5,))))
        >>> gt_instances2 = gt_instances1.new()

        # add and process property
        >>> gt_instances = BaseDataElement()
        >>> gt_instances.set_metainfo(dict(img_id=9, img_shape=(100, 100))
        >>> assert 'img_shape' in gt_instances.metainfo_keys()
        >>> assert 'img_shape' in gt_instances
        >>> assert 'img_shape' not in gt_instances.data_keys()
        >>> assert 'img_shape' in gt_instances.keys()
        >>> print(gt_instances.img_shape)

        >>> gt_instances.scores = torch.rand((5,))
        >>> assert 'scores' in gt_instances.data_keys()
        >>> assert 'scores' in gt_instances
        >>> assert 'scores' in gt_instances.keys()
        >>> assert 'scores' not in gt_instances.metainfo_keys()
        >>> print(gt_instances.scores)

        >>> gt_instances.bboxes = torch.rand((5, 4))
        >>> assert 'bboxes' in gt_instances.data_keys()
        >>> assert 'bboxes' in gt_instances
        >>> assert 'bboxes' in gt_instances.keys()
        >>> assert 'bboxes' not in gt_instances.metainfo_keys()
        >>> print(gt_instances.bboxes)

        # delete and change property
        >>> gt_instances = BaseDataElement(
             metainfo=dict(img_id=0, img_shape=(640, 640))
             data=dict(bboxes=torch.rand((6, 4)), scores=torch.rand((6,))))
        >>> gt_instances.img_shape = (1280, 1280)
        >>> gt_instances.img_shape  # (1280, 1280)
        >>> gt_instances.bboxes = gt_instances.bboxes * 2
        >>> gt_instances.get('img_shape', None)  # (640, 640)
        >>> gt_instances.get('bboxes', None)    # 6x4 tensor
        >>> del gt_instances.img_shape
        >>> del gt_instances.bboxes
        >>> assert 'img_shape' not in gt_instances
        >>> assert 'bboxes' not in gt_instances
        >>> gt_instances.pop('img_shape', None)  # None
        >>> gt_instances.pop('bboxes', None)  # None

        # Tensor-like
        >>> cuda_instances = gt_instances.cuda()
        >>> cuda_instances = gt_instancess.to('cuda:0')
        >>> cpu_instances = cuda_instances.cpu()
        >>> cpu_instances = cuda_instances.to('cpu')
        >>> fp16_instances = cuda_instances.to(
             device=None, dtype=torch.float16, non_blocking=False, copy=False,
             memory_format=torch.preserve_format)
        >>> cpu_instances = cuda_instances.detach()
        >>> np_instances = cpu_instances.numpy()

        # print
        >>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
        >>> instance_data = BaseDataElement(metainfo=img_meta)
        >>> instance_data.det_labels = torch.LongTensor([0, 1, 2, 3])
        >>> instance_data.det_scores = torch.Tensor([0.01, 0.1, 0.2, 0.3])
        >>> print(results)
        <BaseDataElement(
        META INFORMATION
        img_shape: (800, 1196, 3)
        pad_shape: (800, 1216, 3)
        DATA FIELDS
        shape of det_labels: torch.Size([4])
        shape of det_scores: torch.Size([4])
        ) at 0x7f84acd10f90>
    """

    def __init__(self,
                 metainfo: Optional[dict] = None,
                 data: Optional[dict] = None) -> None:

        self._metainfo_fields: set = set()
        self._data_fields: set = set()

        if metainfo is not None:
            self.set_metainfo(metainfo=metainfo)
        if data is not None:
            self.set_data(data)

    def set_metainfo(self, metainfo: dict) -> None:
        """Set or change key-value pairs in ``metainfo_field`` by parameter
        ``metainfo``.

        Args:
            metainfo (dict): A dict contains the meta information
                of image, such as ``img_shape``, ``scale_factor``, etc.
        """
        assert isinstance(
            metainfo,
            dict), f'metainfo should be a ``dict`` but got {type(metainfo)}'
        meta = copy.deepcopy(metainfo)
        for k, v in meta.items():
            if k in self._data_fields:
                raise AttributeError(f'`{k}` is used in data,'
                                     'which is immutable. If you want to'
                                     'change the key in data, please use'
                                     'set_data')
            self._metainfo_fields.add(k)
            self.__dict__[k] = v

    def set_data(self, data: dict) -> None:
        """Set or change key-value pairs in ``data_field`` by parameter
        ``data``.

        Args:
            data (dict): A dict contains annotations of image or
                model predictions.
        """
        assert isinstance(data,
                          dict), f'meta should be a `dict` but got {data}'
        for k, v in data.items():
            self.__setattr__(k, v)

    def new(self,
            metainfo: dict = None,
            data: dict = None) -> 'BaseDataElement':
        """Return a new data element with same type. If ``metainfo`` and
        ``data`` are None, the new data element will have same metainfo and
        data. If metainfo or data is not None, the new result will overwrite it
        with the input value.

        Args:
            metainfo (dict, optional): A dict contains the meta information
                of image, such as ``img_shape``, ``scale_factor``, etc.
                Defaults to None.
            data (dict, optional): A dict contains annotations of image or
                model predictions. Defaults to None.
        """
        new_data = self.__class__()

        if metainfo is not None:
            new_data.set_metainfo(metainfo)
        else:
            new_data.set_metainfo(dict(self.metainfo_items()))
        if data is not None:
            new_data.set_data(data)
        else:
            new_data.set_data(dict(self.data_items()))
        return new_data

    def data_keys(self) -> list:
        """
        Returns:
            list: Contains all keys in data_fields.
        """
        return list(self._data_fields)

    def metainfo_keys(self) -> list:
        """
        Returns:
            list: Contains all keys in metainfo_fields.
        """
        return list(self._metainfo_fields)

    def data_values(self) -> list:
        """
        Returns:
            list: Contains all values in data.
        """
        return [getattr(self, k) for k in self.data_keys()]

    def metainfo_values(self) -> list:
        """
        Returns:
            list: Contains all values in metainfo.
        """
        return [getattr(self, k) for k in self.metainfo_keys()]

    def keys(self) -> list:
        """
        Returns:
            list: Contains all keys in metainfo and data.
        """
        return self.metainfo_keys() + self.data_keys()

    def values(self) -> list:
        """
        Returns:
            list: Contains all values in metainfo and data.
        """
        return self.metainfo_values() + self.data_values()

    def items(self) -> Iterator[Tuple[str, Any]]:
        """
        Returns:
            iterator: an iterator object whose element is (key, value) tuple
            pairs for ``metainfo`` and ``data``.
        """
        for k in self.keys():
            yield (k, getattr(self, k))

    def data_items(self) -> Iterator[Tuple[str, Any]]:
        """
        Returns:
            iterator: an iterator object whose element is (key, value) tuple
            pairs for ``data``.
        """
        for k in self.data_keys():
            yield (k, getattr(self, k))

    def metainfo_items(self) -> Iterator[Tuple[str, Any]]:
        """
        Returns:
            iterator: an iterator object whose element is (key, value) tuple
            pairs for ``metainfo``.
        """
        for k in self.metainfo_keys():
            yield (k, getattr(self, k))

    def __setattr__(self, name: str, val: Any):
        """setattr is only used to set data."""
        if name in ('_metainfo_fields', '_data_fields'):
            if not hasattr(self, name):
                super().__setattr__(name, val)
            else:
                raise AttributeError(f'{name} has been used as a '
                                     'private attribute, which is immutable. ')
        else:
            if name in self._metainfo_fields:
                raise AttributeError(
                    f'`{name}` is used in meta information.'
                    'if you want to change the key in metainfo, please use'
                    'set_metainfo(dict(name=val))')

            self._data_fields.add(name)
            super().__setattr__(name, val)

    def __delattr__(self, item: str):
        if item in ('_metainfo_fields', '_data_fields'):
            raise AttributeError(f'{item} has been used as a '
                                 'private attribute, which is immutable. ')
        super().__delattr__(item)
        if item in self._metainfo_fields:
            self._metainfo_fields.remove(item)
        elif item in self._data_fields:
            self._data_fields.remove(item)

    # dict-like methods
    __setitem__ = __setattr__
    __delitem__ = __delattr__

    def get(self, *args) -> Any:
        """get property in data and metainfo as the same as python."""
        assert len(args) < 3, '``get`` get more than 2 arguments'
        return self.__dict__.get(*args)

    def pop(self, *args) -> Any:
        """pop property in data and metainfo as the same as python."""
        assert len(args) < 3, '``pop`` get more than 2 arguments'
        name = args[0]
        if name in self._metainfo_fields:
            self._metainfo_fields.remove(args[0])
            return self.__dict__.pop(*args)

        elif name in self._data_fields:
            self._data_fields.remove(args[0])
            return self.__dict__.pop(*args)

        # with default value
        elif len(args) == 2:
            return args[1]
        else:
            # don't just use 'self.__dict__.pop(*args)' for only popping key in
            # metainfo or data
            raise KeyError(f'{args[0]} is not contained in metainfo or data')

    def __contains__(self, item: str) -> bool:
        return item in self._data_fields or \
                    item in self._metainfo_fields

    # Tensor-like methods
    def to(self, *args, **kwargs) -> 'BaseDataElement':
        """Apply same name function to all tensors in data_fields."""
        new_data = self.new()
        for k, v in self.data_items():
            if hasattr(v, 'to'):
                v = v.to(*args, **kwargs)
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if hasattr(v, 'to'):
                v = v.to(*args, **kwargs)
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    # Tensor-like methods
    def cpu(self) -> 'BaseDataElement':
        """Convert all tensors to CPU in metainfo and data."""
        new_data = self.new()
        for k, v in self.data_items():
            if isinstance(v, torch.Tensor):
                v = v.cpu()
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if isinstance(v, torch.Tensor):
                v = v.cpu()
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    # Tensor-like methods
    def cuda(self) -> 'BaseDataElement':
        """Convert all tensors to GPU in metainfo and data."""
        new_data = self.new()
        for k, v in self.data_items():
            if isinstance(v, torch.Tensor):
                v = v.cuda()
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if isinstance(v, torch.Tensor):
                v = v.cuda()
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    # Tensor-like methods
    def detach(self) -> 'BaseDataElement':
        """Detach all tensors in metainfo and data."""
        new_data = self.new()
        for k, v in self.data_items():
            if isinstance(v, torch.Tensor):
                v = v.detach()
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if isinstance(v, torch.Tensor):
                v = v.detach()
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    # Tensor-like methods
    def numpy(self) -> 'BaseDataElement':
        """Convert all tensor to np.narray in metainfo and data."""
        new_data = self.new()
        for k, v in self.data_items():
            if isinstance(v, torch.Tensor):
                v = v.detach().cpu().numpy()
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if isinstance(v, torch.Tensor):
                v = v.detach().cpu().numpy()
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    def to_tensor(self) -> 'BaseDataElement':
        """Convert all np.narray to tensor in metainfo and data."""
        new_data = self.new()
        for k, v in self.data_items():
            if isinstance(v, np.ndarray):
                v = torch.from_numpy(v)
                data = {k: v}
                new_data.set_data(data)
        for k, v in self.metainfo_items():
            if isinstance(v, np.ndarray):
                v = torch.from_numpy(v)
                metainfo = {k: v}
                new_data.set_metainfo(metainfo)
        return new_data

    def __repr__(self) -> str:
        repr = '\n  META INFORMATION \n'
        for k, v in self.metainfo_items():
            if isinstance(v, (torch.Tensor, np.ndarray)):
                repr += f'shape of {k}: {v.shape} \n'
            else:
                repr += f'{k}: {v} \n'
        repr += '\n  DATA FIELDS \n'
        for k, v in self.data_items():
            if isinstance(v, (torch.Tensor, np.ndarray)):
                repr += f'shape of {k}: {v.shape} \n'
            else:
                repr += f'{k}: {v} \n'
        classname = self.__class__.__name__
        return f'<{classname}({repr}\n) at {hex(id(self))}>'