Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import multiprocessing as mp
import os
import os.path as osp
import platform
import random
import shutil
import time
import warnings
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.data import pseudo_collate, worker_init_fn
from mmengine.dist import (broadcast, get_dist_info, init_dist, master_only,
sync_random_seed)
from mmengine.evaluator import Evaluator
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger
from mmengine.model import is_model_wrapper
from mmengine.optim import _ParamScheduler, build_optimizer
from mmengine.registry import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS,
MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
DefaultScope)
from mmengine.utils import (TORCH_VERSION, digit_version,
find_latest_checkpoint, is_list_of, symlink)
from mmengine.visualization import ComposedWriter
from .base_loop import BaseLoop
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
get_state_dict, save_checkpoint, weights_to_cpu)
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from .priority import Priority, get_priority
ConfigType = Union[Dict, Config, ConfigDict]
class Runner:
"""A training helper for PyTorch.
Runner object can be built from config by ``runner = Runner.from_cfg(cfg)``
where the ``cfg`` usually contains training, validation, and test-related
configurations to build corresponding components. We usually use the
same config to launch training, testing, and validation tasks. However,
only some of these components are necessary at the same time, e.g.,
testing a model does not need training or validation-related components.
To avoid repeatedly modifying config, the construction of ``Runner`` adopts
lazy initialization to only initialize components when they are going to be
used. Therefore, the model is always initialized at the beginning, and
training, validation, and, testing related components are only initialized
when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``,
respectively.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
Args:
model (:obj:`torch.nn.Module` or dict): The model to be run. It can be
a dict used for build a model.
work_dir (str): The working directory to save checkpoints and logs.
train_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping training steps. Defaults to None.
See :meth:`build_dataloader` for more details.
val_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping validation steps. Defaults to None.
See :meth:`build_dataloader` for more details.
test_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping test steps. Defaults to None.
See :meth:`build_dataloader` for more details.
train_cfg (dict, optional): A dict to build a training loop. If it does
not provide "type" key, it should contain "by_epoch" to decide
which type of training loop :class:`EpochBasedTrainLoop` or
:class:`IterBasedTrainLoop` should be used. If ``train_cfg``
specified, :attr:`train_dataloader` should also be specified.
Defaults to None. See :meth:`build_train_loop` for more details.
val_cfg (dict, optional): A dict to build a validation loop. If it does
not provide "type" key, :class:`ValLoop` will be used by default.
If ``val_cfg`` specified, :attr:`val_dataloader` should also be
specified. Defaults to None.
See :meth:`build_val_loop` for more etails.
test_cfg (dict, optional): A dict to build a test loop. If it does
not provide "type" key, :class:`TestLoop` will be used by default.
If ``test_cfg`` specified, :attr:`test_dataloader` should also be
specified. Defaults to None.
See :meth:`build_test_loop` for more etails.
optimizer (Optimizer or dict, optional): Computing gradient of model
parameters. If specified, :attr:`train_dataloader` should also be
specified. Defaults to None.
param_scheduler (_ParamScheduler or dict or list, optional):
Parameter scheduler for updating optimizer parameters. If
specified, :attr:`optimizer` should also be specified.
Defaults to None.
val_evaluator (Evaluator or dict or list, optional): A evaluator object
used for computing metrics for validation. It can be a dict or a
list of dict to build a evaluator. If specified,
:attr:`val_dataloader` should also be specified. Defaults to None.
test_evaluator (Evaluator or dict or list, optional): A evaluator
object used for computing metrics for test steps. It can be a dict
or a list of dict to build a evaluator. If specified,
:attr:`test_dataloader` should also be specified. Defaults to None.
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to
execute default actions like updating model parameters and saving
checkpoints. Default hooks are ``OptimizerHook``,
``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and
``CheckpointHook``. Defaults to None.
See :meth:`register_default_hooks` for more details.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
load_from (str, optional): The checkpoint file to load from.
Defaults to None.
resume (bool): Whether to resume training. Defaults to False. If
``resume`` is True and ``load_from`` is None, automatically to
find latest checkpoint from ``work_dir``. If not found, resuming
does nothing.
launcher (str): Way to launcher multi-process. Supported launchers
are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is provided,
non-distributed environment will be launched.
env_cfg (dict): A dict used for setting environment. Defaults to
dict(dist_cfg=dict(backend='nccl')).
log_level (int or str): The log level of MMLogger handlers.
Defaults to 'INFO'.
writer (ComposedWriter or dict, optional): A ComposedWriter object or a
dict build ComposedWriter object. Defaults to None. If not
specified, default config will be used.
default_scope (str, optional): Used to reset registries location.
Defaults to None.
randomness (dict): Some settings to make the experiment as reproducible
as possible like seed and deterministic.
Defaults to ``dict(seed=None)``. If seed is None, a random number
will be generated and it will be broadcasted to all other processes
if in distributed environment. If ``cudnn_benchmarch`` is
``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in
``randomness``, the value of ``torch.backends.cudnn.benchmark``
will be ``False`` finally.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
experiment_name (str, optional): Name of current experiment. If not
specified, timestamp will be used as ``experiment_name``.
Defaults to None.
cfg (dict or Configdict or :obj:`Config`, optional): Full config.
Defaults to None.
Examples:
>>> from mmengine import Runner
>>> cfg = dict(
model=dict(type='ToyModel'),
work_dir='path/of/work_dir',
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
optimizer=dict(type='SGD', lr=0.01),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
val_evaluator=dict(type='ToyEvaluator'),
test_evaluator=dict(type='ToyEvaluator'),
train_cfg=dict(by_epoch=True, max_epochs=3),
val_cfg=dict(interval=1),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
logger=dict(type='LoggerHook'),
optimizer=dict(type='OptimizerHook', grad_clip=False),
param_scheduler=dict(type='ParamSchedulerHook')),
launcher='none',
env_cfg=dict(dist_cfg=dict(backend='nccl')),
writer=dict(
name='composed_writer',
writers=[dict(type='LocalWriter', save_dir='temp_dir')])
)
>>> runner.train()
>>> runner.test()
"""
cfg: ConfigType
train_loop: Optional[Union[BaseLoop, Dict]]
val_loop: Optional[Union[BaseLoop, Dict]]
test_loop: Optional[Union[BaseLoop, Dict]]
def __init__(
self,
model: Union[nn.Module, Dict],
work_dir: str,
train_dataloader: Optional[Union[DataLoader, Dict]] = None,
val_dataloader: Optional[Union[DataLoader, Dict]] = None,
test_dataloader: Optional[Union[DataLoader, Dict]] = None,
train_cfg: Optional[Dict] = None,
val_cfg: Optional[Dict] = None,
test_cfg: Optional[Dict] = None,
optimizer: Optional[Union[Optimizer, Dict]] = None,
param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None,
val_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
test_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
load_from: Optional[str] = None,
resume: bool = False,
launcher: str = 'none',
env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')),
writer: Optional[Union[ComposedWriter, Dict]] = None,
default_scope: Optional[str] = None,
experiment_name: Optional[str] = None,
cfg: Optional[ConfigType] = None,
):
self._work_dir = osp.abspath(work_dir)
mmengine.mkdir_or_exist(self._work_dir)
# recursively copy the `cfg` because `self.cfg` will be modified
# everywhere.
if cfg is not None:
self.cfg = copy.deepcopy(cfg)
else:
self.cfg = dict()
self._epoch = 0
self._iter = 0
# lazy initialization
training_related = [train_dataloader, train_cfg, optimizer]
if not (all(item is None for item in training_related)
or all(item is not None for item in training_related)):
raise ValueError(
'train_dataloader, train_cfg, and optimizer should be either '
'all None or not None, but got '
f'train_dataloader={train_dataloader}, '
f'train_cfg={train_cfg}, '
self.train_dataloader = train_dataloader
self.train_loop = train_cfg
self.optimizer = optimizer
# If there is no need to adjust learning rate, momentum or other
# parameters of optimizer, param_scheduler can be None
if param_scheduler is not None and self.optimizer is None:
raise ValueError(
'param_scheduler should be None when optimizer is None, '
f'but got {param_scheduler}')
if not isinstance(param_scheduler, Sequence):
self.param_schedulers = [param_scheduler]
else:
self.param_schedulers = param_scheduler
val_related = [val_dataloader, val_cfg, val_evaluator]
if not (all(item is None
for item in val_related) or all(item is not None
for item in val_related)):
raise ValueError(
'val_dataloader, val_cfg, and val_evaluator should be either '
'all None or not None, but got '
f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, '
f'val_evaluator={val_evaluator}')
self.val_dataloader = val_dataloader
self.val_loop = val_cfg
self.val_evaluator = val_evaluator
test_related = [test_dataloader, test_cfg, test_evaluator]
if not (all(item is None for item in test_related)
or all(item is not None for item in test_related)):
raise ValueError(
'test_dataloader, test_cfg, and test_evaluator should be '
'either all None or not None, but got '
f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, '
f'test_evaluator={test_evaluator}')
self.test_dataloader = test_dataloader
self.test_loop = test_cfg
self.test_evaluator = test_evaluator
self._launcher = launcher
if self._launcher == 'none':
self._distributed = False
else:
self._distributed = True
# self._timestamp will be set in the `setup_env` method. Besides,
# it also will initialize multi-process and (or) distributed
# environment.
self.setup_env(env_cfg)
# self._deterministic and self._seed will be set in the
# `set_randomness`` method
self.set_randomness(**randomness)
if experiment_name is not None:
self._experiment_name = f'{experiment_name}_{self._timestamp}'
elif self.cfg.get('filename') is not None:
filename_no_ext = osp.splitext(osp.basename(
self.cfg['filename']))[0]
self._experiment_name = f'{filename_no_ext}_{self._timestamp}'
else:
self._experiment_name = self.timestamp
self.logger = self.build_logger(log_level=log_level)
# message hub used for component interaction
self.message_hub = self.build_message_hub()
# writer used for writing log or visualizing all kinds of data
self.writer = self.build_writer(writer)
# Used to reset registries location. See :meth:`Registry.build` for
# more details.
self.default_scope = DefaultScope.get_instance(
self._experiment_name, scope_name=default_scope)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
self._load_from = load_from
self._resume = resume
# flag to mark whether checkpoint has been loaded or resumed
self._has_loaded = False
# build a model
self.model = self.build_model(model)
# wrap model
self.model = self.wrap_model(
self.cfg.get('model_wrapper_cfg'), self.model)
# get model name from the model class
if hasattr(self.model, 'module'):
self._model_name = self.model.module.__class__.__name__
else:
self._model_name = self.model.__class__.__name__
self._hooks: List[Hook] = []
# register hooks to `self._hooks`
self.register_hooks(default_hooks, custom_hooks)
self.meta: dict = dict()
# dump `cfg` to `work_dir`
self.dump_config()
@classmethod
def from_cfg(cls, cfg: ConfigType) -> 'Runner':
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""Build a runner from config.
Args:
cfg (ConfigType): A config used for building runner. Keys of
``cfg`` can see :meth:`__init__`.
Returns:
Runner: A runner build from ``cfg``.
"""
cfg = copy.deepcopy(cfg)
runner = cls(
model=cfg['model'],
work_dir=cfg['work_dir'],
train_dataloader=cfg.get('train_dataloader'),
val_dataloader=cfg.get('val_dataloader'),
test_dataloader=cfg.get('test_dataloader'),
train_cfg=cfg.get('train_cfg'),
val_cfg=cfg.get('val_cfg'),
test_cfg=cfg.get('test_cfg'),
optimizer=cfg.get('optimizer'),
param_scheduler=cfg.get('param_scheduler'),
val_evaluator=cfg.get('val_evaluator'),
test_evaluator=cfg.get('test_evaluator'),
default_hooks=cfg.get('default_hooks'),
custom_hooks=cfg.get('custom_hooks'),
load_from=cfg.get('load_from'),
resume=cfg.get('resume', False),
launcher=cfg.get('launcher', 'none'),
env_cfg=cfg.get('env_cfg'), # type: ignore
log_level=cfg.get('log_level', 'INFO'),
writer=cfg.get('writer'),
default_scope=cfg.get('default_scope'),
randomness=cfg.get('randomness', dict(seed=None)),
experiment_name=cfg.get('experiment_name'),
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
cfg=cfg,
)
return runner
@property
def experiment_name(self):
"""str: Name of experiment."""
return self._experiment_name
@property
def model_name(self):
"""str: Name of the model, usually the module class name."""
return self._model_name
@property
def work_dir(self):
"""str: The working directory to save checkpoints and logs."""
return self._work_dir
@property
def epoch(self):
"""int: Current epoch."""
return self._epoch
@property
def iter(self):
"""int: Current epoch."""
return self._iter
@property
def launcher(self):
"""str: Way to launcher multi processes."""
return self._launcher
@property
def distributed(self):
"""bool: Whether current environment is distributed."""
return self._distributed
@property
def rank(self):
"""int: Rank of current process."""
return self._rank
@property
def world_size(self):
"""int: Number of processes participating in the job."""
return self._world_size
@property
def deterministic(self):
"""int: Whether cudnn to select deterministic algorithms."""
return self._deterministic
@property
def seed(self):
"""int: A number to set random modules."""
return self._seed
@property
def timestamp(self):
"""str: Timestamp when creating experiment."""
return self._timestamp
@property
def hooks(self):
"""list[:obj:`Hook`]: A list of registered hooks."""
return self._hooks
def setup_env(self, env_cfg: Dict) -> None:
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
"""Setup environment.
An example of ``env_cfg``::
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(
mp_start_method='fork',
opencv_num_threads=0
),
dist_cfg=dict(backend='nccl'),
)
Args:
env_cfg (dict): Config for setting environment.
"""
if env_cfg.get('cudnn_benchmark'):
torch.backends.cudnn.benchmark = True
if env_cfg.get('mp_cfg') is not None:
self._set_multi_processing(**env_cfg.get('mp_cfg')) # type: ignore
# init distributed env first, since logger depends on the dist info.
if self.distributed and env_cfg.get('dist_cfg') is not None:
init_dist(self.launcher, **env_cfg.get('dist_cfg')) # type: ignore
self._rank, self._world_size = get_dist_info()
timestamp = torch.tensor(time.time(), dtype=torch.float64)
# TODO: handled by broadcast
if self._world_size > 1 and torch.cuda.is_available():
timestamp = timestamp.cuda()
# broadcast timestamp from 0 process to other processes
broadcast(timestamp)
self._timestamp = time.strftime('%Y%m%d_%H%M%S',
time.localtime(timestamp.item()))
def _set_multi_processing(self,
mp_start_method: str = 'fork',
opencv_num_threads: int = 0) -> None:
"""Set multi-processing related environment.
Args:
mp_start_method (str): Set the method which should be used to start
child processes. Defaults to 'fork'.
opencv_num_threads (int): Number of threads for opencv.
Defaults to 0.
"""
# set multi-process start method as `fork` to speed up the training
if platform.system() != 'Windows':
current_method = mp.get_start_method(allow_none=True)
if (current_method is not None
and current_method != mp_start_method):
warnings.warn(
f'Multi-processing start method `{mp_start_method}` is '
f'different from the previous setting `{current_method}`.'
f'It will be force set to `{mp_start_method}`. You can '
'change this behavior by changing `mp_start_method` in '
'your config.')
mp.set_start_method(mp_start_method, force=True)
try:
import cv2
# disable opencv multithreading to avoid system being overloaded
cv2.setNumThreads(opencv_num_threads)
except ImportError:
pass
# setup OMP threads
# This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa
if 'OMP_NUM_THREADS' not in os.environ and self.distributed:
omp_num_threads = 1
warnings.warn(
'Setting OMP_NUM_THREADS environment variable for each process'
f' to be {omp_num_threads} in default, to avoid your system '
'being overloaded, please further tune the variable for '
'optimal performance in your application as needed.')
os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)
# setup MKL threads
if 'MKL_NUM_THREADS' not in os.environ and self.distributed:
mkl_num_threads = 1
warnings.warn(
'Setting MKL_NUM_THREADS environment variable for each process'
f' to be {mkl_num_threads} in default, to avoid your system '
'being overloaded, please further tune the variable for '
'optimal performance in your application as needed.')
os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)
def set_randomness(self, seed, deterministic: bool = False) -> None:
"""Set random seed to guarantee reproducible results.
Args:
seed (int): A number to set random modules.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Defaults to False.
See https://pytorch.org/docs/stable/notes/randomness.html for
more details.
self._deterministic = deterministic
self._seed = seed
if self._seed is None:
self._seed = sync_random_seed()
random.seed(self._seed)
np.random.seed(self._seed)
torch.manual_seed(self._seed)
torch.cuda.manual_seed_all(self._seed)
if deterministic:
if torch.backends.cudnn.benchmark:
warnings.warn(
'torch.backends.cudnn.benchmark is going to be set as '
'`False` to cause cuDNN to deterministically select an '
'algorithm')
torch.backends.cudnn.deterministic = True
if digit_version(TORCH_VERSION) >= digit_version('1.10.0'):
torch.use_deterministic_algorithms(True)
log_level: Union[int, str] = 'INFO',
log_file: str = None,
**kwargs) -> MMLogger:
"""Build a global asscessable MMLogger.
Args:
log_level (int or str): The log level of MMLogger handlers.
Defaults to 'INFO'.
log_file (str, optional): Path of filename to save log.
Defaults to None.
**kwargs: Remaining parameters passed to ``MMLogger``.
Returns:
MMLogger: A MMLogger object build from ``logger``.
"""
if log_file is None:
log_file = osp.join(self.work_dir, f'{self._experiment_name}.log')
log_cfg = dict(log_level=log_level, log_file=log_file, **kwargs)
log_cfg.setdefault('name', self._experiment_name)
return MMLogger.get_instance(**log_cfg) # type: ignore
def build_message_hub(self,
message_hub: Optional[Dict] = None) -> MessageHub:
"""Build a global asscessable MessageHub.
Args:
message_hub (dict, optional): A dict to build MessageHub object.
If not specified, default config will be used to build
MessageHub object. Defaults to None.
Returns:
MessageHub: A MessageHub object build from ``message_hub``.
"""
message_hub = dict(name=self._experiment_name)
elif isinstance(message_hub, dict):
# ensure message_hub containing name key
message_hub.setdefault('name', self._experiment_name)
else:
raise TypeError(
f'message_hub should be dict or None, but got {message_hub}')
return MessageHub.get_instance(**message_hub)
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
def build_writer(
self,
writer: Optional[Union[ComposedWriter,
Dict]] = None) -> ComposedWriter:
"""Build a global asscessable ComposedWriter.
Args:
writer (ComposedWriter or dict, optional): A ComposedWriter object
or a dict to build ComposedWriter object. If ``writer`` is a
ComposedWriter object, just returns itself. If not specified,
default config will be used to build ComposedWriter object.
Defaults to None.
Returns:
ComposedWriter: A ComposedWriter object build from ``writer``.
"""
if isinstance(writer, ComposedWriter):
return writer
elif writer is None:
writer = dict(
name=self._experiment_name,
writers=[dict(type='LocalWriter', save_dir=self._work_dir)])
elif isinstance(writer, dict):
# ensure writer containing name key
writer.setdefault('name', self._experiment_name)
else:
raise TypeError(
'writer should be ComposedWriter object, a dict or None, '
f'but got {writer}')
return ComposedWriter.get_instance(**writer)
def build_model(self, model: Union[nn.Module, Dict]) -> nn.Module:
"""Build model.
If ``model`` is a dict, it will be used to build a nn.Module object
and initialize the weights if it has ``init_weights`` method.
Else, if ``model`` is a nn.Module object it will be returned directly.
An example of ``model``::
model = dict(type='ResNet')
Args:
model (nn.Module or dict): A nn.Module object or a dict to build
nn.Module object. If ``model`` is a nn.Module object, just
returns itself.
Returns:
nn.Module: Model build from ``model``.
"""
if isinstance(model, nn.Module):
return model
elif isinstance(model, dict):
model = MODELS.build(model)
# init weights
if hasattr(model, 'init_weights'):
model.init_weights()
return model
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
else:
raise TypeError('model should be a nn.Module object or dict, '
f'but got {model}')
def wrap_model(self, model_wrapper_cfg: Optional[Dict],
model: nn.Module) -> nn.Module:
"""Wrap model.
An example of ``model_wrapper_cfg``::
model_wrapper_cfg = dict(
broadcast_buffers=False,
find_unused_parameters=False
)
Args:
model_wrapper_cfg (dict, optional): Config to wrap model. If not
specified, ``DistributedDataParallel`` will be used in
distributed environment. Defaults to None.
model (nn.Module): Model to be wrapped.
Returns:
nn.Module: Wrapped model.
"""
if is_model_wrapper(model):
if model_wrapper_cfg is not None:
raise TypeError(
'model has been wrapped and "model_wrapper_cfg" should be '
f'None, but got {model_wrapper_cfg}')
return model
if model_wrapper_cfg is None:
if self.distributed:
find_unused_parameters = self.cfg.get('find_unused_parameters',
False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = DistributedDataParallel(
self.model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
# Set `export CUDA_VISIBLE_DEVICES=-1` can enable CPU training.
if torch.cuda.is_available():
model = model.cuda()
else:
model = MODEL_WRAPPERS.build(
model_wrapper_cfg, default_args=dict(model=self.model))
return model
def build_optimizer(self, optimizer: Union[Optimizer, Dict]) -> Optimizer:
"""Build optimizer.
An example of ``optimizer``::
optimizer = dict(type='SGD', lr=0.01)
Args:
optimizer (Optimizer or dict): An Optimizer object or a dict to
build Optimizer object. If ``optimizer`` is an Optimizer
object, just returns itself.
Returns:
Optimizer: Optimizer build from ``optimizer_cfg``.
"""
if isinstance(optimizer, Optimizer):
return optimizer
elif isinstance(optimizer, dict):
optimizer = build_optimizer(self.model, optimizer)
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
return optimizer
else:
raise TypeError('optimizer should be an Optimizer object or dict, '
f'but got {optimizer}')
def build_param_scheduler(
self, scheduler: Union[_ParamScheduler, Dict,
List]) -> List[_ParamScheduler]:
"""Build parameter schedulers.
Examples of ``scheduler``::
scheduler = dict(type='MultiStepLR', milestones=[1, 2])
# scheduler can also be a list of dict
scheduler = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
]
Args:
scheduler (_ParamScheduler or dict or list): A Param Scheduler
object or a dict or list of dict to build parameter schedulers.
Returns:
list[:obj:`_ParamScheduler`]: List of parameter schedulers build
from ``scheduler``.
"""
if not isinstance(self.optimizer, Optimizer):
raise RuntimeError(
'`build_optimizer` should be called before'
'`build_param_scheduler` because the latter depends on the '
'former')
if not isinstance(scheduler, Sequence):
schedulers = [scheduler]
else:
schedulers = scheduler
param_schedulers = []
for _scheduler in schedulers:
if isinstance(_scheduler, _ParamScheduler):
param_schedulers.append(_scheduler)
elif isinstance(_scheduler, dict):
param_schedulers.append(
PARAM_SCHEDULERS.build(
_scheduler,
default_args=dict(optimizer=self.optimizer)))
else:
raise TypeError(
'_scheduler should be a _ParamScheduler object or dict, '
f'but got {_scheduler}')
return param_schedulers
def build_evaluator(
self, evaluator: Union[Dict, List[Dict], Evaluator]) -> Evaluator:
"""Build evaluator.
Examples of ``evaluator``::
evaluator = dict(type='ToyMetric')
# evaluator can also be a list of dict
evaluator = [
dict(type='ToyEvaluator2')
]
Args:
evaluator (Evaluator or dict or list):
An Evaluator object or a config dict or list of config dict
Evaluator: Evaluator build from ``evaluator``.
if isinstance(evaluator, Evaluator):
return evaluator
elif isinstance(evaluator, dict) or is_list_of(evaluator, dict):
return Evaluator(evaluator) # type: ignore
'evaluator should be one of dict, list of dict, and Evaluator'
f', but got {evaluator}')
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
def build_dataloader(self, dataloader: Union[DataLoader,
Dict]) -> DataLoader:
"""Build dataloader.
The method builds three components:
- Dataset
- Sampler
- Dataloader
An example of ``dataloader``::
dataloader = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=9
)
Args:
dataloader (DataLoader or dict): A Dataloader object or a dict to
build Dataloader object. If ``dataloader`` is a Dataloader
object, just returns itself.
Returns:
Dataloader: DataLoader build from ``dataloader_cfg``.
"""
if isinstance(dataloader, DataLoader):
return dataloader
dataloader_cfg = copy.deepcopy(dataloader)
# build dataset
dataset_cfg = dataloader_cfg.pop('dataset')
if isinstance(dataset_cfg, dict):
dataset = DATASETS.build(dataset_cfg)
else:
# fallback to raise error in dataloader
# if `dataset_cfg` is not a valid type
dataset = dataset_cfg
# build sampler
sampler_cfg = dataloader_cfg.pop('sampler')
if isinstance(sampler_cfg, dict):
sampler = DATA_SAMPLERS.build(
sampler_cfg, default_args=dict(dataset=dataset))
else:
# fallback to raise error in dataloader
# if `sampler_cfg` is not a valid type
sampler = sampler_cfg
# build batch sampler
batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None)
if batch_sampler_cfg is None:
batch_sampler = None
elif isinstance(batch_sampler_cfg, dict):
batch_sampler = DATA_SAMPLERS.build(
batch_sampler_cfg,
default_args=dict(
sampler=sampler,
batch_size=dataloader_cfg.pop('batch_size')))
else:
# fallback to raise error in dataloader
# if `batch_sampler_cfg` is not a valid type
batch_sampler = batch_sampler_cfg
# build dataloader
init_fn: Optional[partial]
if self.seed is not None:
init_fn = partial(
worker_init_fn,
num_workers=dataloader_cfg.get('num_workers'),
rank=self.rank,
seed=self.seed)
else:
init_fn = None
# The default behavior of `collat_fn` in dataloader is to
# merge a list of samples to form a mini-batch of Tensor(s).
# However, to make this more flexible, collate_fn in MMengine does
# nothing. The action to merge a list of samples will be handled
# in model.
data_loader = DataLoader(
dataset=dataset,
sampler=sampler if batch_sampler is None else None,
batch_sampler=batch_sampler,
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
collate_fn=pseudo_collate,
worker_init_fn=init_fn,
**dataloader_cfg)
return data_loader
def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build training loop.
Examples of ``loop``::
# `EpochBasedTrainLoop` will be used
loop = dict(by_epoch=True, max_epochs=3)
# `IterBasedTrainLoop` will be used
loop = dict(by_epoch=False, max_epochs=3)
# custom training loop
loop = dict(type='CustomTrainLoop', max_epochs=3)
Args:
loop (BaseLoop or dict): A training loop or a dict to build
training loop. If ``loop`` is a training loop object, just
returns itself.
Returns:
:obj:`BaseLoop`: Training loop object build from ``loop``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop)
if 'type' in loop_cfg and 'by_epoch' in loop_cfg:
raise RuntimeError(
'Only one of `type` or `by_epoch` can exist in `loop_cfg`.')
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self, dataloader=self.train_dataloader))
else:
by_epoch = loop_cfg.pop('by_epoch')
if by_epoch:
loop = EpochBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self.train_dataloader)
else:
loop = IterBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self.train_dataloader)
# `build_optimizer` should be called before `build_param_scheduler`
# because the latter depends on the former
self.optimizer = self.build_optimizer(self.optimizer)
self.param_schedulers = self.build_param_scheduler( # type: ignore
self.param_schedulers) # type: ignore
return loop # type: ignore
def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build validation loop.
Examples of ``loop``:
# `ValLoop` will be used
loop = dict(interval=1)
# custom validation loop
loop = dict(type='CustomValLoop', interval=1)