Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import os.path as osp
from unittest import TestCase
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.utils.data import DataLoader, Dataset
from mmengine.config import Config
from mmengine.data import DefaultSampler
from mmengine.evaluator import (BaseEvaluator, ComposedEvaluator,
build_evaluator)
from mmengine.hooks import (Hook, IterTimerHook, LoggerHook, OptimizerHook,
ParamSchedulerHook)
from mmengine.hooks.checkpoint_hook import CheckpointHook
from mmengine.logging import MessageHub, MMLogger
from mmengine.optim.scheduler import MultiStepLR, StepLR
from mmengine.registry import (DATASETS, EVALUATORS, HOOKS, LOOPS,
MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
Registry)
from mmengine.runner import (BaseLoop, EpochBasedTrainLoop, IterBasedTrainLoop,
Runner, TestLoop, ValLoop)
from mmengine.runner.priority import Priority, get_priority
from mmengine.utils import is_list_of
from mmengine.visualization.writer import ComposedWriter
@MODELS.register_module()
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, data_batch, return_loss=False):
inputs, labels = zip(*data_batch)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
inputs = torch.stack(inputs).to(device)
labels = torch.stack(labels).to(device)
outputs = self.linear(inputs)
if return_loss:
loss = (labels - outputs).sum()
outputs = dict(loss=loss, log_vars=dict(loss=loss.item()))
return outputs
else:
outputs = dict(log_vars=dict(a=1, b=0.5))
return outputs
@MODELS.register_module()
class ToyModel1(ToyModel):
def __init__(self):
super().__init__()
@MODEL_WRAPPERS.register_module()
class CustomModelWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
@DATASETS.register_module()
class ToyDataset(Dataset):
META = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
return self.data[index], self.label[index]
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
@EVALUATORS.register_module()
class ToyEvaluator2(BaseEvaluator):
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
@HOOKS.register_module()
class ToyHook(Hook):
priority = 'Lowest'
def before_train_epoch(self, runner):
pass
@HOOKS.register_module()
class ToyHook2(Hook):
priority = 'Lowest'
def after_train_epoch(self, runner):
pass
@LOOPS.register_module()
class CustomTrainLoop(BaseLoop):
def __init__(self, runner, dataloader, max_epochs):
super().__init__(runner, dataloader)
self._max_epochs = max_epochs
def run(self) -> None:
pass
@LOOPS.register_module()
class CustomValLoop(BaseLoop):
def __init__(self, runner, dataloader, evaluator, interval=1):
super().__init__(runner, dataloader)
self._runner = runner
if isinstance(evaluator, dict) or is_list_of(evaluator, dict):
self.evaluator = build_evaluator(evaluator) # type: ignore
else:
self.evaluator = evaluator
def run(self) -> None:
pass
@LOOPS.register_module()
class CustomTestLoop(BaseLoop):
def __init__(self, runner, dataloader, evaluator):
super().__init__(runner, dataloader)
self._runner = runner
if isinstance(evaluator, dict) or is_list_of(evaluator, dict):
self.evaluator = build_evaluator(evaluator) # type: ignore
else:
self.evaluator = evaluator
def run(self) -> None:
pass
def collate_fn(data_batch):
return data_batch
class TestRunner(TestCase):
def setUp(self):
self.temp_dir = tempfile.mkdtemp()
epoch_based_cfg = dict(
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
num_workers=0),
optimizer=dict(type='SGD', lr=0.01),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
val_evaluator=dict(type='ToyEvaluator1'),
test_evaluator=dict(type='ToyEvaluator1'),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
logger=dict(type='LoggerHook'),
optimizer=dict(type='OptimizerHook', grad_clip=None),
param_scheduler=dict(type='ParamSchedulerHook')),
launcher='none',
env_cfg=dict(dist_cfg=dict(backend='nccl')),
)
self.epoch_based_cfg = Config(epoch_based_cfg)
self.iter_based_cfg = copy.deepcopy(self.epoch_based_cfg)
self.iter_based_cfg.train_dataloader = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='InfiniteSampler', shuffle=True),
batch_size=3,
num_workers=0)
self.iter_based_cfg.train_cfg = dict(by_epoch=False, max_iters=12)
self.iter_based_cfg.default_hooks = dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1, by_epoch=False),
logger=dict(type='LoggerHook', by_epoch=False),
optimizer=dict(type='OptimizerHook', grad_clip=None),
param_scheduler=dict(type='ParamSchedulerHook'))
time.sleep(1)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
shutil.rmtree(self.temp_dir)
def test_init(self):
# 1. test arguments
# 1.1 train_dataloader, train_cfg, optimizer and param_scheduler
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('train_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
Runner(**cfg)
# all of training related configs are None
cfg.pop('train_dataloader')
cfg.pop('optimizer')
cfg.pop('param_scheduler')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# avoid different runners having same timestamp
time.sleep(1)
# all of training related configs are not None
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# 1.2 val_dataloader, val_evaluator, val_cfg
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('val_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
Runner(**cfg)
time.sleep(1)
cfg.pop('val_dataloader')
cfg.pop('val_evaluator')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
time.sleep(1)
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
# 1.3 test_dataloader, test_evaluator and test_cfg
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('test_cfg')
with self.assertRaisesRegex(ValueError, 'either all None or not None'):
runner = Runner(**cfg)
time.sleep(1)
cfg.pop('test_dataloader')
cfg.pop('test_evaluator')
runner = Runner(**cfg)
self.assertIsInstance(runner, Runner)
time.sleep(1)
# 1.4 test env params
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertFalse(runner.distributed)
self.assertFalse(runner.deterministic)
time.sleep(1)
# 1.5 message_hub, logger and writer
# they are all not specified
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = Runner(**cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertIsInstance(runner.writer, ComposedWriter)
time.sleep(1)
# they are all specified
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.logger = dict(name='test_logger')
cfg.message_hub = dict(name='test_message_hub')
cfg.writer = dict(name='test_writer')
runner = Runner(**cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertEqual(runner.logger.instance_name, 'test_logger')
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertEqual(runner.message_hub.instance_name, 'test_message_hub')
self.assertIsInstance(runner.writer, ComposedWriter)
self.assertEqual(runner.writer.instance_name, 'test_writer')
assert runner.distributed is False
assert runner.seed is not None
assert runner.work_dir == self.temp_dir
# 2 model should be initialized
self.assertIsInstance(runner.model,
(nn.Module, DistributedDataParallel))
self.assertEqual(runner.model_name, 'ToyModel')
# 3. test lazy initialization
self.assertIsInstance(runner.train_dataloader, dict)
self.assertIsInstance(runner.val_dataloader, dict)
self.assertIsInstance(runner.test_dataloader, dict)
self.assertIsInstance(runner.optimizer, dict)
self.assertIsInstance(runner.param_schedulers[0], dict)
# After calling runner.train(),
# train_dataloader and val_loader should be initialized but
# test_dataloader should also be dict
self.assertIsInstance(runner.train_loop, BaseLoop)
self.assertIsInstance(runner.train_loop.dataloader, DataLoader)
self.assertIsInstance(runner.optimizer, SGD)
self.assertIsInstance(runner.param_schedulers[0], MultiStepLR)
self.assertIsInstance(runner.val_loop, BaseLoop)
self.assertIsInstance(runner.val_loop.dataloader, DataLoader)
self.assertIsInstance(runner.val_loop.evaluator, ToyEvaluator1)
# After calling runner.test(), test_dataloader should be initialized
self.assertIsInstance(runner.test_loop, dict)
runner.test()
self.assertIsInstance(runner.test_loop, BaseLoop)
self.assertIsInstance(runner.test_loop.dataloader, DataLoader)
self.assertIsInstance(runner.test_loop.evaluator, ToyEvaluator1)
time.sleep(1)
# 4. initialize runner with objects rather than config
model = ToyModel()
optimizer = SGD(
model.parameters(),
lr=0.01,
)
toy_hook = ToyHook()
toy_hook2 = ToyHook2()
train_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
val_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
test_dataloader = DataLoader(ToyDataset(), collate_fn=collate_fn)
train_dataloader=train_dataloader,
optimizer=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
val_cfg=dict(interval=1),
val_dataloader=val_dataloader,
val_evaluator=ToyEvaluator1(),
test_cfg=dict(),
test_dataloader=test_dataloader,
test_evaluator=ToyEvaluator1(),
default_hooks=dict(param_scheduler=toy_hook),
custom_hooks=[toy_hook2])
runner.train()
def test_build_from_cfg(self):
runner = Runner.build_from_cfg(cfg=self.epoch_based_cfg)
self.assertIsInstance(runner, Runner)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.logger, MMLogger)
self.assertEqual(runner.experiment_name, runner.logger.instance_name)
self.assertEqual(runner.logger.level, logging.NOTSET)
# input is a MMLogger object
self.assertEqual(
id(runner.build_logger(runner.logger)), id(runner.logger))
# input is None
runner._experiment_name = 'logger_name1'
logger = runner.build_logger(None)
self.assertIsInstance(logger, MMLogger)
self.assertEqual(logger.instance_name, 'logger_name1')
# input is a dict
log_cfg = dict(name='logger_name2')
logger = runner.build_logger(log_cfg)
self.assertIsInstance(logger, MMLogger)
self.assertEqual(logger.instance_name, 'logger_name2')
# input is a dict but does not contain name key
runner._experiment_name = 'logger_name3'
log_cfg = dict()
logger = runner.build_logger(log_cfg)
self.assertIsInstance(logger, MMLogger)
self.assertEqual(logger.instance_name, 'logger_name3')
# input is not a valid type
with self.assertRaisesRegex(TypeError, 'logger should be'):
runner.build_logger('invalid-type')
def test_build_message_hub(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.message_hub, MessageHub)
self.assertEqual(runner.message_hub.instance_name,
runner.experiment_name)
# input is a MessageHub object
self.assertEqual(
id(runner.build_message_hub(runner.message_hub)),
id(runner.message_hub))
# input is a dict
message_hub_cfg = dict(name='message_hub_name1')
message_hub = runner.build_message_hub(message_hub_cfg)
self.assertIsInstance(message_hub, MessageHub)
self.assertEqual(message_hub.instance_name, 'message_hub_name1')
# input is a dict but does not contain name key
runner._experiment_name = 'message_hub_name2'
message_hub_cfg = dict()
message_hub = runner.build_message_hub(message_hub_cfg)
self.assertIsInstance(message_hub, MessageHub)
self.assertEqual(message_hub.instance_name, 'message_hub_name2')
# input is not a valid type
with self.assertRaisesRegex(TypeError, 'message_hub should be'):
runner.build_message_hub('invalid-type')
def test_build_writer(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.writer, ComposedWriter)
self.assertEqual(runner.experiment_name, runner.writer.instance_name)
# input is a ComposedWriter object
self.assertEqual(
id(runner.build_writer(runner.writer)), id(runner.writer))
# input is a dict
writer_cfg = dict(name='writer_name1')
writer = runner.build_writer(writer_cfg)
self.assertIsInstance(writer, ComposedWriter)
self.assertEqual(writer.instance_name, 'writer_name1')
# input is a dict but does not contain name key
runner._experiment_name = 'writer_name2'
writer_cfg = dict()
writer = runner.build_writer(writer_cfg)
self.assertIsInstance(writer, ComposedWriter)
self.assertEqual(writer.instance_name, 'writer_name2')
# input is not a valid type
with self.assertRaisesRegex(TypeError, 'writer should be'):
runner.build_writer('invalid-type')
def test_default_scope(self):
TOY_SCHEDULERS = Registry(
'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy')
@TOY_SCHEDULERS.register_module()
class ToyScheduler(MultiStepLR):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.epoch_based_cfg.param_scheduler = dict(
self.epoch_based_cfg.default_scope = 'toy'
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.param_schedulers[0], ToyScheduler)
def test_build_model(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertIsInstance(runner.model, ToyModel)
# input should be a nn.Module object or dict
with self.assertRaisesRegex(TypeError, 'model should be'):
runner.build_model('invalid-type')
# input is a nn.Module object
_model = ToyModel1()
model = runner.build_model(_model)
self.assertEqual(id(model), id(_model))
# input is a dict
model = runner.build_model(dict(type='ToyModel1'))
self.assertIsInstance(model, ToyModel1)
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def test_wrap_model(self):
# TODO: test on distributed environment
# custom model wrapper
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.model_wrapper_cfg = dict(type='CustomModelWrapper')
runner = Runner.build_from_cfg(cfg)
self.assertIsInstance(runner.model, CustomModelWrapper)
def test_build_optimizer(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
# input should be an Optimizer object or dict
with self.assertRaisesRegex(TypeError, 'optimizer should be'):
runner.build_optimizer('invalid-type')
# input is an Optimizer object
_optimizer = SGD(runner.model.parameters(), lr=0.01)
optimizer = runner.build_optimizer(_optimizer)
self.assertEqual(id(_optimizer), id(optimizer))
# input is a dict
optimizer = runner.build_optimizer(dict(type='SGD', lr=0.01))
self.assertIsInstance(optimizer, SGD)
def test_build_param_scheduler(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
# `build_optimizer` should be called before `build_param_scheduler`
cfg = dict(type='MultiStepLR', milestones=[1, 2])
runner.optimizer = None
with self.assertRaisesRegex(RuntimeError, 'should be called before'):
runner.build_param_scheduler(cfg)
runner.optimizer = runner.build_optimizer(dict(type='SGD', lr=0.01))
param_schedulers = runner.build_param_scheduler(cfg)
self.assertIsInstance(param_schedulers, list)
self.assertEqual(len(param_schedulers), 1)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
# input is a ParamScheduler object
param_scheduler = MultiStepLR(runner.optimizer, milestones=[1, 2])
param_schedulers = runner.build_param_scheduler(param_scheduler)
self.assertEqual(id(param_schedulers[0]), id(param_scheduler))
# input is a list of dict
cfg = [
dict(type='MultiStepLR', milestones=[1, 2]),
dict(type='StepLR', step_size=1)
]
param_schedulers = runner.build_param_scheduler(cfg)
self.assertEqual(len(param_schedulers), 2)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
self.assertIsInstance(param_schedulers[1], StepLR)
# input is a list and some items are ParamScheduler objects
cfg = [param_scheduler, dict(type='StepLR', step_size=1)]
param_schedulers = runner.build_param_scheduler(cfg)
self.assertEqual(len(param_schedulers), 2)
self.assertIsInstance(param_schedulers[0], MultiStepLR)
self.assertIsInstance(param_schedulers[1], StepLR)
def test_build_evaluator(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
# input is a BaseEvaluator or ComposedEvaluator object
evaluator = ToyEvaluator1()
self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator))
evaluator = ComposedEvaluator([ToyEvaluator1(), ToyEvaluator2()])
self.assertEqual(id(runner.build_evaluator(evaluator)), id(evaluator))
# input is a dict or list of dict
evaluator = dict(type='ToyEvaluator1')
self.assertIsInstance(runner.build_evaluator(evaluator), ToyEvaluator1)
# input is a invalid type
evaluator = [dict(type='ToyEvaluator1'), dict(type='ToyEvaluator2')]
self.assertIsInstance(
runner.build_evaluator(evaluator), ComposedEvaluator)
def test_build_dataloader(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
cfg = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0)
dataloader = runner.build_dataloader(cfg)
self.assertIsInstance(dataloader, DataLoader)
self.assertIsInstance(dataloader.dataset, ToyDataset)
self.assertIsInstance(dataloader.sampler, DefaultSampler)
def test_build_train_loop(self):
# input should be a Loop object or dict
runner = Runner.build_from_cfg(self.epoch_based_cfg)
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_train_loop('invalid-type')
# Only one of type or by_epoch can exist in cfg
cfg = dict(type='EpochBasedTrainLoop', by_epoch=True, max_epochs=3)
with self.assertRaisesRegex(RuntimeError, 'Only one'):
runner.build_train_loop(cfg)
# input is a dict and contains type key
cfg = dict(type='EpochBasedTrainLoop', max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, EpochBasedTrainLoop)
cfg = dict(type='IterBasedTrainLoop', max_iters=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, IterBasedTrainLoop)
# input is a dict and does not contain type key
cfg = dict(by_epoch=True, max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, EpochBasedTrainLoop)
cfg = dict(by_epoch=False, max_iters=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, IterBasedTrainLoop)
# input is a Loop object
self.assertEqual(id(runner.build_train_loop(loop)), id(loop))
# test custom training loop
cfg = dict(type='CustomTrainLoop', max_epochs=3)
loop = runner.build_train_loop(cfg)
self.assertIsInstance(loop, CustomTrainLoop)
def test_build_val_loop(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
# input should be a Loop object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_test_loop('invalid-type')
# input is a dict and contains type key
cfg = dict(type='ValLoop', interval=1)
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, ValLoop)
# input is a dict but does not contain type key
cfg = dict(interval=1)
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, ValLoop)
# input is a Loop object
self.assertEqual(id(runner.build_val_loop(loop)), id(loop))
# test custom validation loop
cfg = dict(type='CustomValLoop', interval=1)
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, CustomValLoop)
def test_build_test_loop(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
# input should be a Loop object or dict
with self.assertRaisesRegex(TypeError, 'should be'):
runner.build_test_loop('invalid-type')
# input is a dict and contains type key
cfg = dict(type='TestLoop')
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, TestLoop)
# input is a dict but does not contain type key
cfg = dict()
loop = runner.build_test_loop(cfg)
self.assertIsInstance(loop, TestLoop)
# input is a Loop object
self.assertEqual(id(runner.build_test_loop(loop)), id(loop))
# test custom validation loop
cfg = dict(type='CustomTestLoop')
loop = runner.build_val_loop(cfg)
self.assertIsInstance(loop, CustomTestLoop)
def test_train(self):
# 1. test `self.train_loop` is None
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('train_dataloader')
cfg.pop('train_cfg')
cfg.pop('optimizer')
cfg.pop('param_scheduler')
runner = Runner.build_from_cfg(cfg)
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.train()
# 2. test iter and epoch counter of EpochBasedTrainLoop
iter_targets = [i for i in range(4 * 3)]
batch_idx_results = []
batch_idx_targets = [i for i in range(4)] * 3 # train and val
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, batch_idx, data_batch=None):
batch_idx_results.append(batch_idx)
self.epoch_based_cfg.custom_hooks = [
dict(type='TestEpochHook', priority=50)
]
runner = Runner.build_from_cfg(self.epoch_based_cfg)
assert isinstance(runner.train_loop, EpochBasedTrainLoop)
for result, target, in zip(epoch_results, epoch_targets):
self.assertEqual(result, target)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(batch_idx_results, batch_idx_targets):
# 3. test iter and epoch counter of IterBasedTrainLoop
batch_idx_targets = [i for i in range(12)]
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, batch_idx, data_batch=None):
batch_idx_results.append(batch_idx)
self.iter_based_cfg.custom_hooks = [
dict(type='TestIterHook', priority=50)
]
self.iter_based_cfg.val_cfg = dict(interval=4)
runner = Runner.build_from_cfg(self.iter_based_cfg)
assert isinstance(runner.train_loop, IterBasedTrainLoop)
self.assertEqual(len(epoch_results), 1)
self.assertEqual(epoch_results[0], 0)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(batch_idx_results, batch_idx_targets):
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
def test_val(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('val_dataloader')
cfg.pop('val_cfg')
cfg.pop('val_evaluator')
runner = Runner.build_from_cfg(cfg)
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.val()
time.sleep(1)
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner.val()
def test_test(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.pop('test_dataloader')
cfg.pop('test_cfg')
cfg.pop('test_evaluator')
runner = Runner.build_from_cfg(cfg)
with self.assertRaisesRegex(RuntimeError, 'should not be None'):
runner.test()
time.sleep(1)
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner.test()
def test_register_hook(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner._hooks = []
# 1. test `hook` parameter
# 1.1 `hook` should be either a Hook object or dict
with self.assertRaisesRegex(
TypeError, 'hook should be an instance of Hook or dict'):
runner.register_hook(['string'])
# 1.2 `hook` is a dict
timer_cfg = dict(type='IterTimerHook')
runner.register_hook(timer_cfg)
self.assertEqual(len(runner._hooks), 1)
self.assertTrue(isinstance(runner._hooks[0], IterTimerHook))
# default priority of `IterTimerHook` is 'NORMAL'
self.assertEqual(
get_priority(runner._hooks[0].priority), get_priority('NORMAL'))
runner._hooks = []
# 1.2.1 `hook` is a dict and contains `priority` field
# set the priority of `IterTimerHook` as 'BELOW_NORMAL'
timer_cfg = dict(type='IterTimerHook', priority='BELOW_NORMAL')
runner.register_hook(timer_cfg)
self.assertEqual(len(runner._hooks), 1)
self.assertTrue(isinstance(runner._hooks[0], IterTimerHook))
self.assertEqual(
get_priority(runner._hooks[0].priority),
get_priority('BELOW_NORMAL'))
# 1.3 `hook` is a hook object
optimizer_hook = OptimizerHook()
runner.register_hook(optimizer_hook)
self.assertEqual(len(runner._hooks), 2)
# The priority of `OptimizerHook` is `HIGH` which is greater than
# `IterTimerHook`, so the first item of `_hooks` should be
# `OptimizerHook`
self.assertTrue(isinstance(runner._hooks[0], OptimizerHook))
self.assertEqual(
get_priority(runner._hooks[0].priority), get_priority('HIGH'))
# 2. test `priority` parameter
# `priority` argument is not None and it will be set as priority of
# hook
param_scheduler_cfg = dict(type='ParamSchedulerHook', priority='LOW')
runner.register_hook(param_scheduler_cfg, priority='VERY_LOW')
self.assertEqual(len(runner._hooks), 3)
self.assertTrue(isinstance(runner._hooks[2], ParamSchedulerHook))
self.assertEqual(
get_priority(runner._hooks[2].priority), get_priority('VERY_LOW'))
# `priority` is Priority
logger_cfg = dict(type='LoggerHook', priority='BELOW_NORMAL')
runner.register_hook(logger_cfg, priority=Priority.VERY_LOW)
self.assertEqual(len(runner._hooks), 4)
self.assertTrue(isinstance(runner._hooks[3], LoggerHook))
self.assertEqual(
get_priority(runner._hooks[3].priority), get_priority('VERY_LOW'))
def test_default_hooks(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner._hooks = []
# register five hooks by default
runner.register_default_hooks()
self.assertEqual(len(runner._hooks), 5)
# the forth registered hook should be `ParamSchedulerHook`
self.assertTrue(isinstance(runner._hooks[3], ParamSchedulerHook))
runner._hooks = []
# remove `ParamSchedulerHook` from default hooks
runner.register_default_hooks(hooks=dict(timer=None))
self.assertEqual(len(runner._hooks), 4)
# `ParamSchedulerHook` was popped so the forth is `CheckpointHook`
self.assertTrue(isinstance(runner._hooks[3], CheckpointHook))
# add a new default hook
runner._hooks = []
runner.register_default_hooks(hooks=dict(ToyHook=dict(type='ToyHook')))
self.assertEqual(len(runner._hooks), 6)
self.assertTrue(isinstance(runner._hooks[5], ToyHook))
def test_custom_hooks(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
self.assertEqual(len(runner._hooks), 5)
custom_hooks = [dict(type='ToyHook')]
runner.register_custom_hooks(custom_hooks)
self.assertEqual(len(runner._hooks), 6)
self.assertTrue(isinstance(runner._hooks[5], ToyHook))
def test_register_hooks(self):
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner._hooks = []
custom_hooks = [dict(type='ToyHook')]
runner.register_hooks(custom_hooks=custom_hooks)
# five default hooks + custom hook (ToyHook)
self.assertEqual(len(runner._hooks), 6)
self.assertTrue(isinstance(runner._hooks[5], ToyHook))
def test_custom_loop(self):
# test custom loop with additional hook
@LOOPS.register_module()
class CustomTrainLoop2(IterBasedTrainLoop):
"""Custom train loop with additional warmup stage."""
def __init__(self, runner, dataloader, max_iters, warmup_loader,
runner=runner, dataloader=dataloader, max_iters=max_iters)
self.warmup_loader = self.runner.build_dataloader(
warmup_loader)
self.max_warmup_iters = max_warmup_iters
def run(self):
self.runner.call_hook('before_train')
self.runner.cur_dataloader = self.warmup_loader
for idx, data_batch in enumerate(self.warmup_loader, 1):
self.runner.cur_dataloader = self.warmup_loader
self.runner.call_hook('before_train_epoch')
while self.runner.iter < self._max_iters:
data_batch = next(self.dataloader)
self.runner.call_hook('after_train_epoch')
self.runner.call_hook('after_train')
self.runner.call_hook(
'before_warmup_iter', data_batch=data_batch)
self.runner.outputs = self.runner.model(
data_batch, return_loss=True)
self.runner.call_hook(
data_batch=data_batch,
outputs=self.runner.outputs)
before_warmup_iter_results = []
after_warmup_iter_results = []
@HOOKS.register_module()
class TestWarmupHook(Hook):
"""test custom train loop."""
def before_warmup_iter(self, runner, data_batch=None):
def after_warmup_iter(self, runner, data_batch=None, outputs=None):
self.iter_based_cfg.train_cfg = dict(
type='CustomTrainLoop2',
max_iters=10,
warmup_loader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='InfiniteSampler', shuffle=True),
batch_size=1,
num_workers=0),
max_warmup_iters=5)
self.iter_based_cfg.custom_hooks = [
dict(type='TestWarmupHook', priority=50)
]
runner = Runner.build_from_cfg(self.iter_based_cfg)
self.assertIsInstance(runner.train_loop, CustomTrainLoop2)
# test custom hook triggered as expected
self.assertEqual(len(before_warmup_iter_results), 5)
self.assertEqual(len(after_warmup_iter_results), 5)
for before, after in zip(before_warmup_iter_results,
after_warmup_iter_results):
self.assertEqual(before, 'before')
self.assertEqual(after, 'after')
def test_checkpoint(self):
# 1. test epoch based
runner = Runner.build_from_cfg(self.epoch_based_cfg)
runner.train()
# 1.1 test `save_checkpoint` which called by `CheckpointHook`
path = osp.join(self.temp_dir, 'epoch_3.pth')
self.assertTrue(osp.exists(path))
self.assertTrue(osp.exists(osp.join(self.temp_dir, 'latest.pth')))
self.assertFalse(osp.exists(osp.join(self.temp_dir, 'epoch_4.pth')))