Skip to content
Snippets Groups Projects
test_runner.py 20.8 KiB
Newer Older
RangiLyu's avatar
RangiLyu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import multiprocessing as mp
import os
import os.path as osp
import platform
import tempfile
from unittest import TestCase
from unittest.mock import patch

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD
from torch.utils.data import DataLoader, Dataset

from mmengine.config import Config
from mmengine.evaluator import BaseEvaluator
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger
from mmengine.model.wrappers import MMDataParallel, MMDistributedDataParallel
from mmengine.optim.scheduler import MultiStepLR
from mmengine.registry import (DATASETS, EVALUATORS, HOOKS, LOOPS,
                               MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
                               Registry)
from mmengine.runner import Runner
from mmengine.runner.loop import EpochBasedTrainLoop, IterBasedTrainLoop


@MODELS.register_module()
class ToyModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 1, 1)
        self.conv2 = nn.Conv2d(1, 1, 1)

    def forward(self, x):
        return self.conv2(F.relu(self.conv1(x)))

    def train_step(self, *inputs, **kwargs):
        pass

    def val_step(self, *inputs, **kwargs):
        pass


@DATASETS.register_module()
class ToyDataset(Dataset):
    META = dict()  # type: ignore
    data = np.zeros((10, 1, 1, 1))

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index):
        return torch.from_numpy(self.data[index])


@EVALUATORS.register_module()
class ToyEvaluator(BaseEvaluator):

    def __init__(self, collect_device='cpu', dummy_metrics=None):
        super().__init__(collect_device=collect_device)
        self.dummy_metrics = dummy_metrics

    def process(self, data_samples, predictions):
        result = {'acc': 1}
        self.results.append(result)

    def compute_metrics(self, results):
        return dict(acc=1)


class TestRunner(TestCase):

    def setUp(self):
        self.temp_dir = tempfile.gettempdir()
        full_cfg = dict(
            model=dict(type='ToyModel'),
            train_dataloader=dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=True),
                batch_size=1,
                num_workers=0),
            val_dataloader=dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=False),
                batch_size=1,
                num_workers=0),
            test_dataloader=dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=False),
                batch_size=1,
                num_workers=0),
            optimizer=dict(type='SGD', lr=0.01),
            param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
            evaluator=dict(type='ToyEvaluator'),
            train_cfg=dict(by_epoch=True, max_epochs=3),
            validation_cfg=dict(interval=1),
            test_cfg=dict(),
            custom_hooks=[],
            default_hooks=dict(
                timer=dict(type='IterTimerHook'),
                checkpoint=dict(type='CheckpointHook', interval=1),
                logger=dict(type='TextLoggerHook'),
                optimizer=dict(type='OptimizerHook', grad_clip=False),
                param_scheduler=dict(type='ParamSchedulerHook')),
            env_cfg=dict(dist_params=dict(backend='nccl'), ),
            log_cfg=dict(log_level='INFO'),
            work_dir=self.temp_dir)
        self.full_cfg = Config(full_cfg)

    def tearDown(self):
        os.removedirs(self.temp_dir)

    def test_build_from_cfg(self):
        runner = Runner.build_from_cfg(cfg=self.full_cfg)
        # test env params
        assert runner.distributed is False
        assert runner.seed is not None
        assert runner.work_dir == self.temp_dir

        # model should be full initialized
        assert isinstance(runner.model, (nn.Module, MMDataParallel))
        # lazy init
        assert isinstance(runner.optimzier, dict)
        assert isinstance(runner.scheduler, list)
        assert isinstance(runner.train_dataloader, dict)
        assert isinstance(runner.val_dataloader, dict)
        assert isinstance(runner.test_dataloader, dict)
        assert isinstance(runner.evaluator, dict)

        # after runner.train(), train and val loader should be initialized
        # test loader should still be config
        runner.train()
        assert isinstance(runner.test_dataloader, dict)
        assert isinstance(runner.train_dataloader, DataLoader)
        assert isinstance(runner.val_dataloader, DataLoader)
        assert isinstance(runner.optimzier, SGD)
        assert isinstance(runner.evaluator, ToyEvaluator)

        runner.test()
        assert isinstance(runner.test_dataloader, DataLoader)

        # cannot run runner.test() without evaluator cfg
        with self.assertRaisesRegex(AssertionError,
                                    'evaluator does not exist'):
            cfg = copy.deepcopy(self.full_cfg)
            cfg.pop('evaluator')
            runner = Runner.build_from_cfg(cfg)
            runner.test()

        # cannot run runner.train() without optimizer cfg
        with self.assertRaisesRegex(AssertionError,
                                    'optimizer does not exist'):
            cfg = copy.deepcopy(self.full_cfg)
            cfg.pop('optimizer')
            runner = Runner.build_from_cfg(cfg)
            runner.train()

        # can run runner.train() without validation
        cfg = copy.deepcopy(self.full_cfg)
        cfg.validation_cfg = None
        cfg.pop('evaluator')
        cfg.pop('val_dataloader')
        runner = Runner.build_from_cfg(cfg)
        runner.train()

    def test_manually_init(self):
        model = ToyModel()
        optimizer = SGD(
            model.parameters(),
            lr=0.01,
        )

        class ToyHook(Hook):

            def before_train_epoch(self, runner):
                pass

        class ToyHook2(Hook):

            def after_train_epoch(self, runner):
                pass

        toy_hook = ToyHook()
        toy_hook2 = ToyHook2()
        runner = Runner(
            model=model,
            train_dataloader=DataLoader(dataset=ToyDataset()),
            val_dataloader=DataLoader(dataset=ToyDataset()),
            optimzier=optimizer,
            param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
            evaluator=ToyEvaluator(),
            train_cfg=dict(by_epoch=True, max_epochs=3),
            validation_cfg=dict(interval=1),
            default_hooks=dict(param_scheduler=toy_hook),
            custom_hooks=[toy_hook2])
        runner.train()
        hook_names = [hook.__class__.__name__ for hook in runner.hooks]
        # test custom hook registered in runner
        assert 'ToyHook2' in hook_names
        # test default hook is replaced
        assert 'ToyHook' in hook_names
        # test other default hooks
        assert 'IterTimerHook' in hook_names

        # cannot run runner.test() when test_dataloader is None
        with self.assertRaisesRegex(AssertionError,
                                    'test dataloader does not exist'):
            runner.test()

        # cannot run runner.train() when optimizer is None
        with self.assertRaisesRegex(AssertionError,
                                    'optimizer does not exist'):
            runner = Runner(
                model=model,
                train_dataloader=DataLoader(dataset=ToyDataset()),
                val_dataloader=DataLoader(dataset=ToyDataset()),
                param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
                evaluator=ToyEvaluator(),
                train_cfg=dict(by_epoch=True, max_epochs=3),
                validation_cfg=dict(interval=1))
            runner.train()

        # cannot run runner.train() when validation_cfg is set
        # but val loader is None
        with self.assertRaisesRegex(AssertionError,
                                    'optimizer does not exist'):
            runner = Runner(
                model=model,
                train_dataloader=DataLoader(dataset=ToyDataset()),
                optimzier=optimizer,
                param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
                train_cfg=dict(by_epoch=True, max_epochs=3),
                validation_cfg=dict(interval=1))
            runner.train()

        # run runner.train() without validation
        runner = Runner(
            model=model,
            train_dataloader=DataLoader(dataset=ToyDataset()),
            optimzier=optimizer,
            param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
            train_cfg=dict(by_epoch=True, max_epochs=3),
            validation_cfg=None)
        runner.train()

    def test_setup_env(self):
        # temporarily store system setting
        sys_start_mehod = mp.get_start_method(allow_none=True)
        # pop and temp save system env vars
        sys_omp_threads = os.environ.pop('OMP_NUM_THREADS', default=None)
        sys_mkl_threads = os.environ.pop('MKL_NUM_THREADS', default=None)

        # test default multi-processing setting when workers > 1
        cfg = copy.deepcopy(self.full_cfg)
        cfg.train_dataloader.num_workers = 4
        cfg.test_dataloader.num_workers = 4
        cfg.val_dataloader.num_workers = 4
        Runner.build_from_cfg(cfg)
        assert os.getenv('OMP_NUM_THREADS') == '1'
        assert os.getenv('MKL_NUM_THREADS') == '1'
        if platform.system() != 'Windows':
            assert mp.get_start_method() == 'fork'

        # test default multi-processing setting when workers <= 1
        os.environ.pop('OMP_NUM_THREADS')
        os.environ.pop('MKL_NUM_THREADS')
        cfg = copy.deepcopy(self.full_cfg)
        cfg.train_dataloader.num_workers = 0
        cfg.test_dataloader.num_workers = 0
        cfg.val_dataloader.num_workers = 0
        Runner.build_from_cfg(cfg)
        assert 'OMP_NUM_THREADS' not in os.environ
        assert 'MKL_NUM_THREADS' not in os.environ

        # test manually set env var
        os.environ['OMP_NUM_THREADS'] = '3'
        cfg = copy.deepcopy(self.full_cfg)
        cfg.train_dataloader.num_workers = 2
        cfg.test_dataloader.num_workers = 2
        cfg.val_dataloader.num_workers = 2
        Runner.build_from_cfg(cfg)
        assert os.getenv('OMP_NUM_THREADS') == '3'

        # test manually set mp start method
        cfg = copy.deepcopy(self.full_cfg)
        cfg.env_cfg.mp_cfg = dict(mp_start_method='spawn')
        Runner.build_from_cfg(cfg)
        assert mp.get_start_method() == 'spawn'

        # revert setting to avoid affecting other programs
        if sys_start_mehod:
            mp.set_start_method(sys_start_mehod, force=True)
        if sys_omp_threads:
            os.environ['OMP_NUM_THREADS'] = sys_omp_threads
        else:
            os.environ.pop('OMP_NUM_THREADS')
        if sys_mkl_threads:
            os.environ['MKL_NUM_THREADS'] = sys_mkl_threads
        else:
            os.environ.pop('MKL_NUM_THREADS')

    def test_logger(self):
        runner = Runner.build_from_cfg(self.full_cfg)
        assert isinstance(runner.logger, MMLogger)
        # test latest logger and runner logger are the same
        assert runner.logger.level == logging.INFO
        assert MMLogger.get_instance(
        ).instance_name == runner.logger.instance_name
        # test latest message hub and runner message hub are the same
        assert isinstance(runner.message_hub, MessageHub)
        assert MessageHub.get_instance(
        ).instance_name == runner.message_hub.instance_name

        # test set log level in cfg
        self.full_cfg.log_cfg.log_level = 'DEBUG'
        runner = Runner.build_from_cfg(self.full_cfg)
        assert runner.logger.level == logging.DEBUG

    @patch('torch.distributed.get_rank', lambda: 0)
    @patch('torch.distributed.is_initialized', lambda: True)
    @patch('torch.distributed.is_available', lambda: True)
    def test_model_wrapper(self):
        # non-distributed model build from config
        runner = Runner.build_from_cfg(self.full_cfg)
        assert isinstance(runner.model, MMDataParallel)

        # non-distributed model build manually
        model = ToyModel()
        runner = Runner(
            model=model, train_cfg=dict(by_epoch=True, max_epochs=3))
        assert isinstance(runner.model, MMDataParallel)

        # distributed model build from config
        cfg = copy.deepcopy(self.full_cfg)
        cfg.launcher = 'pytorch'
        runner = Runner.build_from_cfg(cfg)
        assert isinstance(runner.model, MMDistributedDataParallel)

        # distributed model build manually
        model = ToyModel()
        runner = Runner(
            model=model,
            train_cfg=dict(by_epoch=True, max_epochs=3),
            env_cfg=dict(dist_params=dict(backend='nccl')),
            launcher='pytorch')
        assert isinstance(runner.model, MMDistributedDataParallel)

        # custom model wrapper
        @MODEL_WRAPPERS.register_module()
        class CustomModelWrapper:

            def train_step(self, *inputs, **kwargs):
                pass

            def val_step(self, *inputs, **kwargs):
                pass

        cfg = copy.deepcopy(self.full_cfg)
        cfg.model_wrapper = dict(type='CustomModelWrapper')
        runner = Runner.build_from_cfg(cfg)
        assert isinstance(runner.model, CustomModelWrapper)

    def test_default_scope(self):
        TOY_SCHEDULERS = Registry(
            'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy')

        @TOY_SCHEDULERS.register_module()
        class ToyScheduler(MultiStepLR):

            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)

        self.full_cfg.param_scheduler = dict(
            type='ToyScheduler', milestones=[1, 2])
        self.full_cfg.default_scope = 'toy'

        runner = Runner.build_from_cfg(self.full_cfg)
        runner.train()
        assert isinstance(runner.scheduler[0], ToyScheduler)

    def test_checkpoint(self):
        runner = Runner.build_from_cfg(self.full_cfg)
        runner.run()
        path = osp.join(self.temp_dir, 'epoch_3.pth')
        runner.save_checkpoint(path)
        assert osp.exists(path)
        ckpt = torch.load(path)
        # scheduler should saved in the checkpoint
        assert isinstance(ckpt['scheduler'], list)

        # load by a new runner but not resume
        runner2 = Runner.build_from_cfg(self.full_cfg)
        runner2.load_checkpoint(path, resume=False)
        self.assertNotEqual(runner2.epoch, runner.epoch)
        self.assertNotEqual(runner2.iter, runner.iter)

        # load by a new runner and resume
        runner3 = Runner.build_from_cfg(self.full_cfg)
        runner3.load_checkpoint(path, resume=True)
        self.assertEqual(runner3.epoch, runner.epoch)
        self.assertEqual(runner3.iter, runner.iter)

    def test_custom_hooks(self):
        results = []
        targets = [0, 1, 2]

        @HOOKS.register_module()
        class ToyHook(Hook):

            def before_train_epoch(self, runner):
                results.append(runner.epoch)

        self.full_cfg.custom_hooks = [dict(type='ToyHook', priority=50)]
        runner = Runner.build_from_cfg(self.full_cfg)

        # test hook registered in runner
        hook_names = [hook.__class__.__name__ for hook in runner.hooks]
        assert 'ToyHook' in hook_names

        # test hook behavior
        runner.train()
        for result, target, in zip(results, targets):
            self.assertEqual(result, target)

    def test_iter_based(self):
        self.full_cfg.train_cfg = dict(by_epoch=False, max_iters=30)

        # test iter and epoch counter of IterBasedTrainLoop
        epoch_results = []
        iter_results = []
        inner_iter_results = []
        iter_targets = [i for i in range(30)]

        @HOOKS.register_module()
        class TestIterHook(Hook):

            def before_train_epoch(self, runner):
                epoch_results.append(runner.epoch)

            def before_train_iter(self, runner):
                iter_results.append(runner.iter)
                inner_iter_results.append(runner.inner_iter)

        self.full_cfg.custom_hooks = [dict(type='TestIterHook', priority=50)]
        runner = Runner.build_from_cfg(self.full_cfg)

        assert isinstance(runner._train_loop, IterBasedTrainLoop)

        runner.train()

        self.assertEqual(len(epoch_results), 1)
        self.assertEqual(epoch_results[0], 0)
        for result, target, in zip(iter_results, iter_targets):
            self.assertEqual(result, target)
        for result, target, in zip(inner_iter_results, iter_targets):
            self.assertEqual(result, target)

    def test_epoch_based(self):
        self.full_cfg.train_cfg = dict(by_epoch=True, max_epochs=3)

        # test iter and epoch counter of EpochBasedTrainLoop
        epoch_results = []
        epoch_targets = [i for i in range(3)]
        iter_results = []
        iter_targets = [i for i in range(10 * 3)]
        inner_iter_results = []
        inner_iter_targets = [i for i in range(10)] * 3  # train and val

        @HOOKS.register_module()
        class TestEpochHook(Hook):

            def before_train_epoch(self, runner):
                epoch_results.append(runner.epoch)

            def before_train_iter(self, runner, data_batch=None):
                iter_results.append(runner.iter)
                inner_iter_results.append(runner.inner_iter)

        self.full_cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)]
        runner = Runner.build_from_cfg(self.full_cfg)

        assert isinstance(runner._train_loop, EpochBasedTrainLoop)

        runner.train()

        for result, target, in zip(epoch_results, epoch_targets):
            self.assertEqual(result, target)
        for result, target, in zip(iter_results, iter_targets):
            self.assertEqual(result, target)
        for result, target, in zip(inner_iter_results, inner_iter_targets):
            self.assertEqual(result, target)

    def test_custom_loop(self):
        # test custom loop with additional hook
        @LOOPS.register_module()
        class CustomTrainLoop(EpochBasedTrainLoop):
            """custom train loop with additional warmup stage."""

            def __init__(self, runner, loader, max_epochs, warmup_loader,
                         max_warmup_iters):
                super().__init__(
                    runner=runner, loader=loader, max_epochs=max_epochs)
                self.warmup_loader = self.runner.build_dataloader(
                    warmup_loader)
                self.max_warmup_iters = max_warmup_iters

            def run(self):
                self.runner.call_hooks('before_run')
                for idx, data_batch in enumerate(self.warmup_loader):
                    self.warmup_iter(data_batch)
                    if idx >= self.max_warmup_iters:
                        break

                self.runner.call_hooks('before_train_epoch')
                while self.runner.iter < self._max_iter:
                    data_batch = next(self.loader)
                    self.run_iter(data_batch)
                self.runner.call_hooks('after_train_epoch')
                self.runner.call_hooks('after_run')

            def warmup_iter(self, data_batch):
                self.runner.call_hooks(
                    'before_warmup_iter', args=dict(data_batch=data_batch))
                outputs = self.runner.model.train_step(data_batch)
                self.runner.call_hooks(
                    'after_warmup_iter',
                    args=dict(data_batch=data_batch, outputs=outputs))

        before_warmup_iter_results = []
        after_warmup_iter_results = []

        @HOOKS.register_module()
        class TestWarmupHook(Hook):
            """test custom train loop."""

            def before_warmup_iter(self, data_batch=None):
                before_warmup_iter_results.append('before')

            def after_warmup_iter(self, data_batch=None, outputs=None):
                after_warmup_iter_results.append('after')

        self.full_cfg.train_cfg = dict(
            type='CustomTrainLoop',
            max_epochs=3,
            warmup_loader=dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=True),
                batch_size=1,
                num_workers=0),
            max_warmup_iters=5)
        self.full_cfg.custom_hooks = [dict(type='TestWarmupHook', priority=50)]
        runner = Runner.build_from_cfg(self.full_cfg)

        assert isinstance(runner._train_loop, CustomTrainLoop)

        runner.train()

        # test custom hook triggered normally
        self.assertEqual(len(before_warmup_iter_results), 5)
        self.assertEqual(len(after_warmup_iter_results), 5)
        for before, after in zip(before_warmup_iter_results,
                                 after_warmup_iter_results):
            self.assertEqual(before, 'before')
            self.assertEqual(after, 'after')