Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import multiprocessing as mp
import os
import os.path as osp
import platform
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD
from torch.utils.data import DataLoader, Dataset
from mmengine.config import Config
from mmengine.evaluator import BaseEvaluator
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger
from mmengine.model.wrappers import MMDataParallel, MMDistributedDataParallel
from mmengine.optim.scheduler import MultiStepLR
from mmengine.registry import (DATASETS, EVALUATORS, HOOKS, LOOPS,
MODEL_WRAPPERS, MODELS, PARAM_SCHEDULERS,
Registry)
from mmengine.runner import Runner
from mmengine.runner.loop import EpochBasedTrainLoop, IterBasedTrainLoop
@MODELS.register_module()
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv2(F.relu(self.conv1(x)))
def train_step(self, *inputs, **kwargs):
pass
def val_step(self, *inputs, **kwargs):
pass
@DATASETS.register_module()
class ToyDataset(Dataset):
META = dict() # type: ignore
data = np.zeros((10, 1, 1, 1))
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
return torch.from_numpy(self.data[index])
@EVALUATORS.register_module()
class ToyEvaluator(BaseEvaluator):
def __init__(self, collect_device='cpu', dummy_metrics=None):
super().__init__(collect_device=collect_device)
self.dummy_metrics = dummy_metrics
def process(self, data_samples, predictions):
result = {'acc': 1}
self.results.append(result)
def compute_metrics(self, results):
return dict(acc=1)
class TestRunner(TestCase):
def setUp(self):
self.temp_dir = tempfile.gettempdir()
full_cfg = dict(
model=dict(type='ToyModel'),
train_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
test_dataloader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=1,
num_workers=0),
optimizer=dict(type='SGD', lr=0.01),
param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
evaluator=dict(type='ToyEvaluator'),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1),
test_cfg=dict(),
custom_hooks=[],
default_hooks=dict(
timer=dict(type='IterTimerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
logger=dict(type='TextLoggerHook'),
optimizer=dict(type='OptimizerHook', grad_clip=False),
param_scheduler=dict(type='ParamSchedulerHook')),
env_cfg=dict(dist_params=dict(backend='nccl'), ),
log_cfg=dict(log_level='INFO'),
work_dir=self.temp_dir)
self.full_cfg = Config(full_cfg)
def tearDown(self):
os.removedirs(self.temp_dir)
def test_build_from_cfg(self):
runner = Runner.build_from_cfg(cfg=self.full_cfg)
# test env params
assert runner.distributed is False
assert runner.seed is not None
assert runner.work_dir == self.temp_dir
# model should be full initialized
assert isinstance(runner.model, (nn.Module, MMDataParallel))
# lazy init
assert isinstance(runner.optimzier, dict)
assert isinstance(runner.scheduler, list)
assert isinstance(runner.train_dataloader, dict)
assert isinstance(runner.val_dataloader, dict)
assert isinstance(runner.test_dataloader, dict)
assert isinstance(runner.evaluator, dict)
# after runner.train(), train and val loader should be initialized
# test loader should still be config
runner.train()
assert isinstance(runner.test_dataloader, dict)
assert isinstance(runner.train_dataloader, DataLoader)
assert isinstance(runner.val_dataloader, DataLoader)
assert isinstance(runner.optimzier, SGD)
assert isinstance(runner.evaluator, ToyEvaluator)
runner.test()
assert isinstance(runner.test_dataloader, DataLoader)
# cannot run runner.test() without evaluator cfg
with self.assertRaisesRegex(AssertionError,
'evaluator does not exist'):
cfg = copy.deepcopy(self.full_cfg)
cfg.pop('evaluator')
runner = Runner.build_from_cfg(cfg)
runner.test()
# cannot run runner.train() without optimizer cfg
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
cfg = copy.deepcopy(self.full_cfg)
cfg.pop('optimizer')
runner = Runner.build_from_cfg(cfg)
runner.train()
# can run runner.train() without validation
cfg = copy.deepcopy(self.full_cfg)
cfg.validation_cfg = None
cfg.pop('evaluator')
cfg.pop('val_dataloader')
runner = Runner.build_from_cfg(cfg)
runner.train()
def test_manually_init(self):
model = ToyModel()
optimizer = SGD(
model.parameters(),
lr=0.01,
)
class ToyHook(Hook):
def before_train_epoch(self, runner):
pass
class ToyHook2(Hook):
def after_train_epoch(self, runner):
pass
toy_hook = ToyHook()
toy_hook2 = ToyHook2()
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
val_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
evaluator=ToyEvaluator(),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1),
default_hooks=dict(param_scheduler=toy_hook),
custom_hooks=[toy_hook2])
runner.train()
hook_names = [hook.__class__.__name__ for hook in runner.hooks]
# test custom hook registered in runner
assert 'ToyHook2' in hook_names
# test default hook is replaced
assert 'ToyHook' in hook_names
# test other default hooks
assert 'IterTimerHook' in hook_names
# cannot run runner.test() when test_dataloader is None
with self.assertRaisesRegex(AssertionError,
'test dataloader does not exist'):
runner.test()
# cannot run runner.train() when optimizer is None
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
val_dataloader=DataLoader(dataset=ToyDataset()),
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
evaluator=ToyEvaluator(),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1))
runner.train()
# cannot run runner.train() when validation_cfg is set
# but val loader is None
with self.assertRaisesRegex(AssertionError,
'optimizer does not exist'):
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=dict(interval=1))
runner.train()
# run runner.train() without validation
runner = Runner(
model=model,
train_dataloader=DataLoader(dataset=ToyDataset()),
optimzier=optimizer,
param_scheduler=MultiStepLR(optimizer, milestones=[1, 2]),
train_cfg=dict(by_epoch=True, max_epochs=3),
validation_cfg=None)
runner.train()
def test_setup_env(self):
# temporarily store system setting
sys_start_mehod = mp.get_start_method(allow_none=True)
# pop and temp save system env vars
sys_omp_threads = os.environ.pop('OMP_NUM_THREADS', default=None)
sys_mkl_threads = os.environ.pop('MKL_NUM_THREADS', default=None)
# test default multi-processing setting when workers > 1
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 4
cfg.test_dataloader.num_workers = 4
cfg.val_dataloader.num_workers = 4
Runner.build_from_cfg(cfg)
assert os.getenv('OMP_NUM_THREADS') == '1'
assert os.getenv('MKL_NUM_THREADS') == '1'
if platform.system() != 'Windows':
assert mp.get_start_method() == 'fork'
# test default multi-processing setting when workers <= 1
os.environ.pop('OMP_NUM_THREADS')
os.environ.pop('MKL_NUM_THREADS')
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 0
cfg.test_dataloader.num_workers = 0
cfg.val_dataloader.num_workers = 0
Runner.build_from_cfg(cfg)
assert 'OMP_NUM_THREADS' not in os.environ
assert 'MKL_NUM_THREADS' not in os.environ
# test manually set env var
os.environ['OMP_NUM_THREADS'] = '3'
cfg = copy.deepcopy(self.full_cfg)
cfg.train_dataloader.num_workers = 2
cfg.test_dataloader.num_workers = 2
cfg.val_dataloader.num_workers = 2
Runner.build_from_cfg(cfg)
assert os.getenv('OMP_NUM_THREADS') == '3'
# test manually set mp start method
cfg = copy.deepcopy(self.full_cfg)
cfg.env_cfg.mp_cfg = dict(mp_start_method='spawn')
Runner.build_from_cfg(cfg)
assert mp.get_start_method() == 'spawn'
# revert setting to avoid affecting other programs
if sys_start_mehod:
mp.set_start_method(sys_start_mehod, force=True)
if sys_omp_threads:
os.environ['OMP_NUM_THREADS'] = sys_omp_threads
else:
os.environ.pop('OMP_NUM_THREADS')
if sys_mkl_threads:
os.environ['MKL_NUM_THREADS'] = sys_mkl_threads
else:
os.environ.pop('MKL_NUM_THREADS')
def test_logger(self):
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner.logger, MMLogger)
# test latest logger and runner logger are the same
assert runner.logger.level == logging.INFO
assert MMLogger.get_instance(
).instance_name == runner.logger.instance_name
# test latest message hub and runner message hub are the same
assert isinstance(runner.message_hub, MessageHub)
assert MessageHub.get_instance(
).instance_name == runner.message_hub.instance_name
# test set log level in cfg
self.full_cfg.log_cfg.log_level = 'DEBUG'
runner = Runner.build_from_cfg(self.full_cfg)
assert runner.logger.level == logging.DEBUG
@patch('torch.distributed.get_rank', lambda: 0)
@patch('torch.distributed.is_initialized', lambda: True)
@patch('torch.distributed.is_available', lambda: True)
def test_model_wrapper(self):
# non-distributed model build from config
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner.model, MMDataParallel)
# non-distributed model build manually
model = ToyModel()
runner = Runner(
model=model, train_cfg=dict(by_epoch=True, max_epochs=3))
assert isinstance(runner.model, MMDataParallel)
# distributed model build from config
cfg = copy.deepcopy(self.full_cfg)
cfg.launcher = 'pytorch'
runner = Runner.build_from_cfg(cfg)
assert isinstance(runner.model, MMDistributedDataParallel)
# distributed model build manually
model = ToyModel()
runner = Runner(
model=model,
train_cfg=dict(by_epoch=True, max_epochs=3),
env_cfg=dict(dist_params=dict(backend='nccl')),
launcher='pytorch')
assert isinstance(runner.model, MMDistributedDataParallel)
# custom model wrapper
@MODEL_WRAPPERS.register_module()
class CustomModelWrapper:
def train_step(self, *inputs, **kwargs):
pass
def val_step(self, *inputs, **kwargs):
pass
cfg = copy.deepcopy(self.full_cfg)
cfg.model_wrapper = dict(type='CustomModelWrapper')
runner = Runner.build_from_cfg(cfg)
assert isinstance(runner.model, CustomModelWrapper)
def test_default_scope(self):
TOY_SCHEDULERS = Registry(
'parameter scheduler', parent=PARAM_SCHEDULERS, scope='toy')
@TOY_SCHEDULERS.register_module()
class ToyScheduler(MultiStepLR):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.full_cfg.param_scheduler = dict(
type='ToyScheduler', milestones=[1, 2])
self.full_cfg.default_scope = 'toy'
runner = Runner.build_from_cfg(self.full_cfg)
runner.train()
assert isinstance(runner.scheduler[0], ToyScheduler)
def test_checkpoint(self):
runner = Runner.build_from_cfg(self.full_cfg)
runner.run()
path = osp.join(self.temp_dir, 'epoch_3.pth')
runner.save_checkpoint(path)
assert osp.exists(path)
ckpt = torch.load(path)
# scheduler should saved in the checkpoint
assert isinstance(ckpt['scheduler'], list)
# load by a new runner but not resume
runner2 = Runner.build_from_cfg(self.full_cfg)
runner2.load_checkpoint(path, resume=False)
self.assertNotEqual(runner2.epoch, runner.epoch)
self.assertNotEqual(runner2.iter, runner.iter)
# load by a new runner and resume
runner3 = Runner.build_from_cfg(self.full_cfg)
runner3.load_checkpoint(path, resume=True)
self.assertEqual(runner3.epoch, runner.epoch)
self.assertEqual(runner3.iter, runner.iter)
def test_custom_hooks(self):
results = []
targets = [0, 1, 2]
@HOOKS.register_module()
class ToyHook(Hook):
def before_train_epoch(self, runner):
results.append(runner.epoch)
self.full_cfg.custom_hooks = [dict(type='ToyHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
# test hook registered in runner
hook_names = [hook.__class__.__name__ for hook in runner.hooks]
assert 'ToyHook' in hook_names
# test hook behavior
runner.train()
for result, target, in zip(results, targets):
self.assertEqual(result, target)
def test_iter_based(self):
self.full_cfg.train_cfg = dict(by_epoch=False, max_iters=30)
# test iter and epoch counter of IterBasedTrainLoop
epoch_results = []
iter_results = []
inner_iter_results = []
iter_targets = [i for i in range(30)]
@HOOKS.register_module()
class TestIterHook(Hook):
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner):
iter_results.append(runner.iter)
inner_iter_results.append(runner.inner_iter)
self.full_cfg.custom_hooks = [dict(type='TestIterHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, IterBasedTrainLoop)
runner.train()
self.assertEqual(len(epoch_results), 1)
self.assertEqual(epoch_results[0], 0)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(inner_iter_results, iter_targets):
self.assertEqual(result, target)
def test_epoch_based(self):
self.full_cfg.train_cfg = dict(by_epoch=True, max_epochs=3)
# test iter and epoch counter of EpochBasedTrainLoop
epoch_results = []
epoch_targets = [i for i in range(3)]
iter_results = []
iter_targets = [i for i in range(10 * 3)]
inner_iter_results = []
inner_iter_targets = [i for i in range(10)] * 3 # train and val
@HOOKS.register_module()
class TestEpochHook(Hook):
def before_train_epoch(self, runner):
epoch_results.append(runner.epoch)
def before_train_iter(self, runner, data_batch=None):
iter_results.append(runner.iter)
inner_iter_results.append(runner.inner_iter)
self.full_cfg.custom_hooks = [dict(type='TestEpochHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, EpochBasedTrainLoop)
runner.train()
for result, target, in zip(epoch_results, epoch_targets):
self.assertEqual(result, target)
for result, target, in zip(iter_results, iter_targets):
self.assertEqual(result, target)
for result, target, in zip(inner_iter_results, inner_iter_targets):
self.assertEqual(result, target)
def test_custom_loop(self):
# test custom loop with additional hook
@LOOPS.register_module()
class CustomTrainLoop(EpochBasedTrainLoop):
"""custom train loop with additional warmup stage."""
def __init__(self, runner, loader, max_epochs, warmup_loader,
max_warmup_iters):
super().__init__(
runner=runner, loader=loader, max_epochs=max_epochs)
self.warmup_loader = self.runner.build_dataloader(
warmup_loader)
self.max_warmup_iters = max_warmup_iters
def run(self):
self.runner.call_hooks('before_run')
for idx, data_batch in enumerate(self.warmup_loader):
self.warmup_iter(data_batch)
if idx >= self.max_warmup_iters:
break
self.runner.call_hooks('before_train_epoch')
while self.runner.iter < self._max_iter:
data_batch = next(self.loader)
self.run_iter(data_batch)
self.runner.call_hooks('after_train_epoch')
self.runner.call_hooks('after_run')
def warmup_iter(self, data_batch):
self.runner.call_hooks(
'before_warmup_iter', args=dict(data_batch=data_batch))
outputs = self.runner.model.train_step(data_batch)
self.runner.call_hooks(
'after_warmup_iter',
args=dict(data_batch=data_batch, outputs=outputs))
before_warmup_iter_results = []
after_warmup_iter_results = []
@HOOKS.register_module()
class TestWarmupHook(Hook):
"""test custom train loop."""
def before_warmup_iter(self, data_batch=None):
before_warmup_iter_results.append('before')
def after_warmup_iter(self, data_batch=None, outputs=None):
after_warmup_iter_results.append('after')
self.full_cfg.train_cfg = dict(
type='CustomTrainLoop',
max_epochs=3,
warmup_loader=dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=0),
max_warmup_iters=5)
self.full_cfg.custom_hooks = [dict(type='TestWarmupHook', priority=50)]
runner = Runner.build_from_cfg(self.full_cfg)
assert isinstance(runner._train_loop, CustomTrainLoop)
runner.train()
# test custom hook triggered normally
self.assertEqual(len(before_warmup_iter_results), 5)
self.assertEqual(len(after_warmup_iter_results), 5)
for before, after in zip(before_warmup_iter_results,
after_warmup_iter_results):
self.assertEqual(before, 'before')
self.assertEqual(after, 'after')