Newer
Older
from typing import Any, Callable, Optional, Sequence, Union
import cv2
import numpy as np
import torch
from mmengine.config import Config
from mmengine.fileio import dump
from mmengine.logging import MMLogger
from mmengine.utils.dl_utils import TORCH_VERSION
def force_init_env(old_func: Callable) -> Any:
"""Those methods decorated by ``force_init_env`` will be forced to call
``_init_env`` if the instance has not been fully initiated. This function
will decorated all the `add_xxx` method and `experiment` method, because
`VisBackend` is initialized only when used its API.
Args:
old_func (Callable): Decorated function, make sure the first arg is an
instance with ``_init_env`` method.
Returns:
Any: Depends on old_func.
"""
@functools.wraps(old_func)
def wrapper(obj: object, *args, **kwargs):
# The instance must have `_init_env` method.
if not hasattr(obj, '_init_env'):
raise AttributeError(f'{type(obj)} does not have _init_env '
'method.')
# If instance does not have `_env_initialized` attribute or
# `_env_initialized` is False, call `_init_env` and set
# `_env_initialized` to True
if not getattr(obj, '_env_initialized', False):
logger = MMLogger.get_current_instance()
logger.debug('Attribute `_env_initialized` is not defined in '
f'{type(obj)} or `{type(obj)}._env_initialized is '
'False, `_init_env` will be called and '
f'{type(obj)}._env_initialized will be set to '
'True')
obj._init_env() # type: ignore
obj._env_initialized = True # type: ignore
return old_func(obj, *args, **kwargs)
return wrapper
"""Base class for visualization backend.
All backends must inherit ``BaseVisBackend`` and implement
the required functions.
Args:
save_dir (str, optional): The root directory to save
@property
@abstractmethod
def experiment(self) -> Any:
"""Return the experiment object associated with this visualization
backend.
The experiment attribute can get the visualization backend, such as
wandb, tensorboard. If you want to write other data, such as writing a
table, you can directly get the visualization backend through
experiment.
@abstractmethod
def _init_env(self) -> Any:
"""Setup env for VisBackend."""
pass
def add_config(self, config: Config, **kwargs) -> None:
Args:
config (Config): The Config object
"""
pass
def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
**kwargs) -> None:
Args:
model (torch.nn.Module): Model to draw.
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
pass
def add_image(self,
name: str,
image: np.ndarray,
step: int = 0,
**kwargs) -> None:
name (str): The image identifier.
image (np.ndarray): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
pass
def add_scalar(self,
name: str,
value: Union[int, float],
step: int = 0,
**kwargs) -> None:
name (str): The scalar identifier.
value (int, float): Value to save.
step (int): Global step value to record. Default to 0.
"""
pass
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): The scalar's data will be
saved to the `file_path` file at the same time
if the `file_path` parameter is specified.
Default to None.
"""
pass
def close(self) -> None:
"""close an opened object."""
pass
@VISBACKENDS.register_module()
class LocalVisBackend(BaseVisBackend):
It can write image, config, scalars, etc.
to the local hard disk. You can get the drawing backend
through the experiment property for custom drawing.
Examples:
>>> from mmengine.visualization import LocalVisBackend
>>> import numpy as np
>>> local_vis_backend = LocalVisBackend(save_dir='temp_dir')
>>> img = np.random.randint(0, 256, size=(10, 10, 3))
>>> local_vis_backend.add_scalar('mAP', 0.6)
>>> local_vis_backend.add_scalars({'loss': [1, 2, 3], 'acc': 0.8})
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> local_vis_backend.add_config(cfg)
Args:
save_dir (str, optional): The root directory to save the files
produced by the visualizer. If it is none, it means no data
is stored.
img_save_dir (str): The directory to save images.
Default to 'vis_image'.
config_save_file (str): The file name to save config.
Default to 'config.py'.
scalar_save_file (str): The file name to save scalar values.
Default to 'scalars.json'.
"""
def __init__(self,
img_save_dir: str = 'vis_image',
config_save_file: str = 'config.py',
scalar_save_file: str = 'scalars.json'):
assert config_save_file.split('.')[-1] == 'py'
assert scalar_save_file.split('.')[-1] == 'json'
self._img_save_dir = img_save_dir
self._config_save_file = config_save_file
self._scalar_save_file = scalar_save_file
def _init_env(self):
"""Init save dir."""
if not os.path.exists(self._save_dir):
os.makedirs(self._save_dir, exist_ok=True)
self._img_save_dir = osp.join(
self._save_dir, # type: ignore
self._img_save_dir)
self._config_save_file = osp.join(
self._save_dir, # type: ignore
self._config_save_file)
self._scalar_save_file = osp.join(
self._save_dir, # type: ignore
self._scalar_save_file)
@property # type: ignore
@force_init_env
"""Return the experiment object associated with this visualization
def add_config(self, config: Config, **kwargs) -> None:
"""Record the config to disk.
Args:
config (Config): The Config object
"""
name (str): The image identifier.
image (np.ndarray): The image to be saved. The format
should be RGB. Default to None.
step (int): Global step value to record. Default to 0.
"""
drawn_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
os.makedirs(self._img_save_dir, exist_ok=True)
save_file_name = f'{name}_{step}.png'
cv2.imwrite(osp.join(self._img_save_dir, save_file_name), drawn_image)
value: Union[int, float, torch.Tensor, np.ndarray],
name (str): The scalar identifier.
value (int, float, torch.Tensor, np.ndarray): Value to save.
step (int): Global step value to record. Default to 0.
"""
if isinstance(value, torch.Tensor):
value = value.item()
self._dump({name: value, 'step': step}, self._scalar_save_file, 'json')
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record the scalars to disk.
The scalar dict will be written to the default and
specified files if ``file_path`` is specified.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values. The value must be dumped
into json format.
step (int): Global step value to record. Default to 0.
file_path (str, optional): The scalar's data will be
saved to the ``file_path`` file at the same time
if the ``file_path`` parameter is specified.
Default to None.
"""
assert isinstance(scalar_dict, dict)
scalar_dict = copy.deepcopy(scalar_dict)
if file_path is not None:
assert file_path.split('.')[-1] == 'json'
new_save_file_path = osp.join(
self._save_dir, # type: ignore
file_path)
assert new_save_file_path != self._scalar_save_file, \
'``file_path`` and ``scalar_save_file`` have the ' \
'same name, please set ``file_path`` to another value'
self._dump(scalar_dict, new_save_file_path, 'json')
self._dump(scalar_dict, self._scalar_save_file, 'json')
def _dump(self, value_dict: dict, file_path: str,
file_format: str) -> None:
"""dump dict to file.
Args:
value_dict (dict) : The dict data to saved.
file_path (str): The file path to save data.
file_format (str): The file format to save data.
"""
with open(file_path, 'a+') as f:
dump(value_dict, f, file_format=file_format)
f.write('\n')
@VISBACKENDS.register_module()
class WandbVisBackend(BaseVisBackend):
Examples:
>>> from mmengine.visualization import WandbVisBackend
>>> import numpy as np
>>> wandb_vis_backend = WandbVisBackend()
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> wandb_vis_backend.add_image('img', img)
>>> wandb_vis_backend.add_scaler('mAP', 0.6)
>>> wandb_vis_backend.add_scalars({'loss': [1, 2, 3],'acc': 0.8})
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> wandb_vis_backend.add_config(cfg)
save_dir (str, optional): The root directory to save the files
produced by the visualizer.
init_kwargs (dict, optional): wandb initialization
input parameters. Default to None.
define_metric_cfg (dict, optional):
A dict of metrics and summary for wandb.define_metric.
The key is metric and the value is summary.
When ``define_metric_cfg={'coco/bbox_mAP': 'max'}``,
The maximum value of``coco/bbox_mAP`` is logged on wandb UI.
See
`wandb docs <https://docs.wandb.ai/ref/python/run#define_metric>`_
for details.
Default: None
commit: (bool, optional) Save the metrics dict to the wandb server
and increment the step. If false `wandb.log` just
updates the current metrics dict with the row argument
and metrics won't be saved until `wandb.log` is called
with `commit=True`. Default to True.
log_code_name: (str, optional) The name of code artifact.
By default, the artifact will be named
source-$PROJECT_ID-$ENTRYPOINT_RELPATH. See
`wandb docs <https://docs.wandb.ai/ref/python/run#log_code>`_
for details. Defaults to None.
New in version 0.3.0.
shenmishajing
committed
watch_kwargs (optional, dict): Agurments for ``wandb.watch``.
New in version 0.4.0.
define_metric_cfg: Optional[dict] = None,
commit: Optional[bool] = True,
shenmishajing
committed
log_code_name: Optional[str] = None,
watch_kwargs: Optional[dict] = None):
self._define_metric_cfg = define_metric_cfg
self._log_code_name = log_code_name
shenmishajing
committed
self._watch_kwargs = watch_kwargs if watch_kwargs is not None else {}
def _init_env(self):
"""Setup env for wandb."""
if not os.path.exists(self._save_dir):
os.makedirs(self._save_dir, exist_ok=True) # type: ignore
if self._init_kwargs is None:
self._init_kwargs = {'dir': self._save_dir}
else:
self._init_kwargs.setdefault('dir', self._save_dir)
try:
import wandb
except ImportError:
raise ImportError(
'Please run "pip install wandb" to install wandb')
wandb.init(**self._init_kwargs)
if self._define_metric_cfg is not None:
for metric, summary in self._define_metric_cfg.items():
wandb.define_metric(metric, summary=summary)
self._wandb = wandb
@property # type: ignore
@force_init_env
def experiment(self):
"""Return wandb object.
The experiment attribute can get the wandb backend, If you want to
write other data, such as writing a table, you can directly get the
wandb backend through experiment.
"""
return self._wandb
@force_init_env
def add_config(self, config: Config, **kwargs) -> None:
"""Record the config to wandb.
self._wandb.config.update(dict(config))
self._wandb.run.log_code(name=self._log_code_name)
shenmishajing
committed
@force_init_env
def add_graph(self, model: torch.nn.Module, data_batch: Sequence[dict],
**kwargs) -> None:
"""Record the model graph.
Args:
model (torch.nn.Module): Model to draw.
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
self._wandb.watch(model, **self._watch_kwargs)
name (str): The image identifier.
image (np.ndarray): The image to be saved. The format
should be RGB.
step (int): Useless parameter. Wandb does not
need this parameter. Default to 0.
self._wandb.log({name: image}, commit=self._commit)
value: Union[int, float, torch.Tensor, np.ndarray],
name (str): The scalar identifier.
value (int, float, torch.Tensor, np.ndarray): Value to save.
step (int): Useless parameter. Wandb does not
need this parameter. Default to 0.
self._wandb.log({name: value}, commit=self._commit)
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Useless parameter. Wandb does not
need this parameter. Default to 0.
file_path (str, optional): Useless parameter. Just for
interface unification. Default to None.
"""
self._wandb.log(scalar_dict, commit=self._commit)
def close(self) -> None:
"""close an opened wandb object."""
if hasattr(self, '_wandb'):
self._wandb.join()
@VISBACKENDS.register_module()
class TensorboardVisBackend(BaseVisBackend):
"""Tensorboard visualization backend class.
It can write images, config, scalars, etc. to a
tensorboard file.
Examples:
>>> from mmengine.visualization import TensorboardVisBackend
>>> import numpy as np
>>> tensorboard_vis_backend = \
>>> TensorboardVisBackend(save_dir='temp_dir')
>>> img=np.random.randint(0, 256, size=(10, 10, 3))
>>> tensorboard_vis_backend.add_image('img', img)
>>> tensorboard_vis_backend.add_scaler('mAP', 0.6)
>>> tensorboard_vis_backend.add_scalars({'loss': 0.1,'acc':0.8})
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> tensorboard_vis_backend.add_config(cfg)
Args:
save_dir (str): The root directory to save the files
produced by the backend.
"""
def _init_env(self):
"""Setup env for Tensorboard."""
if not os.path.exists(self._save_dir):
os.makedirs(self._save_dir, exist_ok=True) # type: ignore
if TORCH_VERSION == 'parrots':
try:
from tensorboardX import SummaryWriter
except ImportError:
raise ImportError('Please install tensorboardX to use '
'TensorboardLoggerHook.')
else:
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
raise ImportError(
'Please run "pip install future tensorboard" to install '
'the dependencies to use torch.utils.tensorboard '
'(applicable to PyTorch 1.1 or higher)')
self._tensorboard = SummaryWriter(self._save_dir)
@property # type: ignore
@force_init_env
def experiment(self):
"""Return Tensorboard object."""
return self._tensorboard
def add_config(self, config: Config, **kwargs) -> None:
Args:
config (Config): The Config object
"""
self._tensorboard.add_text('config', config.pretty_text)
@force_init_env
def add_image(self,
name: str,
image: np.ndarray,
step: int = 0,
**kwargs) -> None:
name (str): The image identifier.
image (np.ndarray): The image to be saved. The format
should be RGB.
step (int): Global step value to record. Default to 0.
"""
self._tensorboard.add_image(name, image, step, dataformats='HWC')
value: Union[int, float, torch.Tensor, np.ndarray],
"""Record the scalar data to tensorboard.
name (str): The scalar identifier.
value (int, float, torch.Tensor, np.ndarray): Value to save.
step (int): Global step value to record. Default to 0.
"""
if isinstance(value,
(int, float, torch.Tensor, np.ndarray, np.number)):
self._tensorboard.add_scalar(name, value, step)
else:
warnings.warn(f'Got {type(value)}, but numpy array, torch tensor, '
f'int or float are expected. skip it!')
def add_scalars(self,
scalar_dict: dict,
step: int = 0,
file_path: Optional[str] = None,
**kwargs) -> None:
"""Record the scalar's data to tensorboard.
Args:
scalar_dict (dict): Key-value pair storing the tag and
corresponding values.
step (int): Global step value to record. Default to 0.
file_path (str, optional): Useless parameter. Just for
interface unification. Default to None.
"""
assert isinstance(scalar_dict, dict)
assert 'step' not in scalar_dict, 'Please set it directly ' \
'through the step parameter'
for key, value in scalar_dict.items():
self.add_scalar(key, value, step)
def close(self):
"""close an opened tensorboard object."""
if hasattr(self, '_tensorboard'):
self._tensorboard.close()