Newer
Older
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from collections import OrderedDict
from math import inf
from typing import Optional, Sequence, Union
from mmengine.dist import master_only
from mmengine.fileio import FileClient
from mmengine.registry import HOOKS
DATA_BATCH = Optional[Sequence[dict]]
@HOOKS.register_module()
class CheckpointHook(Hook):
"""Save checkpoints periodically.
Args:
interval (int): The saving period. If ``by_epoch=True``, interval
indicates epochs, otherwise it indicates iterations.
Defaults to -1, which means "never".
by_epoch (bool): Saving checkpoints by epoch or by iteration.
Default: True.
save_optimizer (bool): Whether to save optimizer state_dict in the
checkpoint. It is usually used for resuming experiments.
save_param_scheduler (bool): Whether to save param_scheduler state_dict
in the checkpoint. It is usually used for resuming experiments.
out_dir (str, optional | Path): The root directory to save checkpoints.
If not specified, ``runner.work_dir`` will be used by default. If
specified, the ``out_dir`` will be the concatenation of ``out_dir``
and the last level directory of ``runner.work_dir``. For example,
if the input ``our_dir`` is ``./tmp`` and ``runner.work_dir`` is
``./work_dir/cur_exp``, then the ckpt will be saved in
``./tmp/cur_exp``. Defaults to None.
max_keep_ckpts (int): The maximum checkpoints to keep.
In some cases we want only the latest few checkpoints and would
like to delete old ones to save the disk space.
Defaults to -1, which means unlimited.
save_last (bool): Whether to force the last checkpoint to be
saved regardless of interval. Defaults to True.
save_best (str, optional): If a metric is specified, it would measure
the best checkpoint during evaluation. The information about best
checkpoint would be saved in ``runner.message_hub`` to keep
best score value and best checkpoint path, which will be also
loaded when resuming checkpoint. Options are the evaluation metrics
on the test dataset. e.g., ``bbox_mAP``, ``segm_mAP`` for bbox
detection and instance segmentation. ``AR@100`` for proposal
recall. If ``save_best`` is ``auto``, the first key of the returned
``OrderedDict`` result will be used. Defaults to None.
rule (str, optional): Comparison rule for best score. If set to
None, it will infer a reasonable rule. Keys such as 'acc', 'top'
.etc will be inferred by 'greater' rule. Keys contain 'loss' will
be inferred by 'less' rule. Options are 'greater', 'less', None.
Defaults to None.
greater_keys (List[str], optional): Metric keys that will be
inferred by 'greater' comparison rule. If ``None``,
_default_greater_keys will be used. Defaults to None.
less_keys (List[str], optional): Metric keys that will be
inferred by 'less' comparison rule. If ``None``, _default_less_keys
will be used. Defaults to None.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmcv.fileio.FileClient` for details.
# logic to save best checkpoints
# Since the key for determining greater or less is related to the
# downstream tasks, downstream repositories may need to overwrite
# the following inner variables accordingly.
rule_map = {'greater': lambda x, y: x > y, 'less': lambda x, y: x < y}
init_value_map = {'greater': -inf, 'less': inf}
_default_greater_keys = [
'acc', 'top', 'AR@', 'auc', 'precision', 'mAP', 'mDice', 'mIoU',
'mAcc', 'aAcc'
]
_default_less_keys = ['loss']
def __init__(self,
interval: int = -1,
by_epoch: bool = True,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
out_dir: Optional[Union[str, Path]] = None,
max_keep_ckpts: int = -1,
save_last: bool = True,
save_best: Optional[str] = None,
rule: Optional[str] = None,
greater_keys: Optional[Sequence[str]] = None,
less_keys: Optional[Sequence[str]] = None,
file_client_args: Optional[dict] = None,
**kwargs) -> None:
self.interval = interval
self.by_epoch = by_epoch
self.save_optimizer = save_optimizer
self.save_param_scheduler = save_param_scheduler
self.out_dir = out_dir # type: ignore
self.max_keep_ckpts = max_keep_ckpts
self.save_last = save_last
self.args = kwargs
self.file_client_args = file_client_args
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# save best logic
assert isinstance(save_best, str) or save_best is None, \
'"save_best" should be a str or None ' \
f'rather than {type(save_best)}'
self.save_best = save_best
if greater_keys is None:
self.greater_keys = self._default_greater_keys
else:
if not isinstance(greater_keys, (list, tuple)):
greater_keys = (greater_keys, ) # type: ignore
assert is_seq_of(greater_keys, str)
self.greater_keys = greater_keys # type: ignore
if less_keys is None:
self.less_keys = self._default_less_keys
else:
if not isinstance(less_keys, (list, tuple)):
less_keys = (less_keys, ) # type: ignore
assert is_seq_of(less_keys, str)
self.less_keys = less_keys # type: ignore
if self.save_best is not None:
self.best_ckpt_path = None
self._init_rule(rule, self.save_best)
def before_train(self, runner) -> None:
"""Finish all operations, related to checkpoint.
This function will get the appropriate file client, and the directory
to save these checkpoints of the model.
Args:
runner (Runner): The runner of the training process.
if self.out_dir is None:
self.file_client = FileClient.infer_client(self.file_client_args,
self.out_dir)
# if `self.out_dir` is not equal to `runner.work_dir`, it means that
# `self.out_dir` is set so the final `self.out_dir` is the
# concatenation of `self.out_dir` and the last level directory of
# `runner.work_dir`
if self.out_dir != runner.work_dir:
basename = osp.basename(runner.work_dir.rstrip(osp.sep))
self.out_dir = self.file_client.join_path(
self.out_dir, basename) # type: ignore # noqa: E501
runner.logger.info(f'Checkpoints will be saved to {self.out_dir} by '
f'{self.file_client.name}.')
if self.save_best is not None:
if 'best_ckpt' not in runner.message_hub.runtime_info:
self.best_ckpt_path = None
else:
self.best_ckpt_path = runner.message_hub.get_info('best_ckpt')
"""Save the checkpoint and synchronize buffers after each epoch.
Args:
runner (Runner): The runner of the training process.
"""
if not self.by_epoch:
return
# save checkpoint for following cases:
# 1. every ``self.interval`` epochs
# 2. reach the last epoch of training
if self.every_n_epochs(runner, self.interval) or (
self.save_last and self.is_last_train_epoch(runner)):
runner.logger.info(
f'Saving checkpoint at {runner.epoch + 1} epochs')
def after_val_epoch(self, runner, metrics):
"""Save the checkpoint and synchronize buffers after each evaluation
epoch.
Args:
runner (Runner): The runner of the training process.
metrics (dict): Evaluation results of all metrics
"""
self._save_best_checkpoint(runner, metrics)
def _get_metric_score(self, metrics):
eval_res = OrderedDict()
if metrics is not None:
eval_res.update(metrics)
if len(eval_res) == 0:
warnings.warn(
'Since `eval_res` is an empty dict, the behavior to save '
'the best checkpoint will be skipped in this evaluation.')
return None
if self.key_indicator == 'auto':
self._init_rule(self.rule, list(eval_res.keys())[0])
return eval_res[self.key_indicator]
"""Save the current checkpoint and delete outdated checkpoint.
Args:
runner (Runner): The runner of the training process.
if self.by_epoch:
ckpt_filename = self.args.get(
'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1)
else:
ckpt_filename = self.args.get(
'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1)
ckpt_filename,
self.file_client_args,
save_optimizer=self.save_optimizer,
save_param_scheduler=self.save_param_scheduler,
by_epoch=self.by_epoch,
**self.args)
runner.message_hub.update_info(
'last_ckpt', self.file_client.join_path(self.out_dir,
ckpt_filename))
# remove other checkpoints
if self.max_keep_ckpts > 0:
if self.by_epoch:
name = 'epoch_{}.pth'
redundant_ckpts = range(
current_ckpt - self.max_keep_ckpts * self.interval, 0,
-self.interval)
filename_tmpl = self.args.get('filename_tmpl', name)
for _step in redundant_ckpts:
ckpt_path = self.file_client.join_path(
self.out_dir, filename_tmpl.format(_step))
if self.file_client.isfile(ckpt_path):
self.file_client.remove(ckpt_path)
else:
break
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@master_only
def _save_best_checkpoint(self, runner, metrics) -> None:
"""Save the current checkpoint and delete outdated checkpoint.
Args:
runner (Runner): The runner of the training process.
"""
if not self.save_best:
return
if self.by_epoch:
ckpt_filename = self.args.get(
'filename_tmpl', 'epoch_{}.pth').format(runner.epoch + 1)
cur_type, cur_time = 'epoch', runner.epoch + 1
else:
ckpt_filename = self.args.get(
'filename_tmpl', 'iter_{}.pth').format(runner.iter + 1)
cur_type, cur_time = 'iter', runner.iter + 1
# save best logic
# get score from messagehub
# notice `_get_metirc_score` helps to infer
# self.rule when self.save_best is `auto`
key_score = self._get_metric_score(metrics)
if 'best_score' not in runner.message_hub.runtime_info:
best_score = self.init_value_map[self.rule]
else:
best_score = runner.message_hub.get_info('best_score')
if not key_score or not self.is_better_than(key_score, best_score):
return
best_score = key_score
runner.message_hub.update_info('best_score', best_score)
if self.best_ckpt_path and self.file_client.isfile(
self.best_ckpt_path):
self.file_client.remove(self.best_ckpt_path)
runner.logger.info(
f'The previous best checkpoint {self.best_ckpt_path} '
'is removed')
best_ckpt_name = f'best_{self.key_indicator}_{ckpt_filename}'
self.best_ckpt_path = self.file_client.join_path( # type: ignore # noqa: E501
self.out_dir, best_ckpt_name)
runner.message_hub.update_info('best_ckpt', self.best_ckpt_path)
runner.save_checkpoint(
self.out_dir,
filename=best_ckpt_name,
file_client_args=self.file_client_args,
save_optimizer=False,
save_param_scheduler=False,
by_epoch=False)
runner.logger.info(
f'The best checkpoint with {best_score:0.4f} {self.key_indicator} '
f'at {cur_time} {cur_type} is saved to {best_ckpt_name}.')
def _init_rule(self, rule, key_indicator) -> None:
"""Initialize rule, key_indicator, comparison_func, and best score.
Here is the rule to determine which rule is used for key indicator when
the rule is not specific (note that the key indicator matching is case-
insensitive):
1. If the key indicator is in ``self.greater_keys``, the rule will be
specified as 'greater'.
2. Or if the key indicator is in ``self.less_keys``, the rule will be
specified as 'less'.
3. Or if any one item in ``self.greater_keys`` is a substring of
key_indicator , the rule will be specified as 'greater'.
4. Or if any one item in ``self.less_keys`` is a substring of
key_indicator , the rule will be specified as 'less'.
Args:
rule (str | None): Comparison rule for best score.
key_indicator (str | None): Key indicator to determine the
comparison rule.
"""
if rule not in self.rule_map and rule is not None:
raise KeyError('rule must be greater, less or None, '
f'but got {rule}.')
if rule is None and key_indicator != 'auto':
# `_lc` here means we use the lower case of keys for
# case-insensitive matching
key_indicator_lc = key_indicator.lower()
greater_keys = [key.lower() for key in self.greater_keys]
less_keys = [key.lower() for key in self.less_keys]
if key_indicator_lc in greater_keys:
rule = 'greater'
elif key_indicator_lc in less_keys:
rule = 'less'
elif any(key in key_indicator_lc for key in greater_keys):
rule = 'greater'
elif any(key in key_indicator_lc for key in less_keys):
rule = 'less'
else:
raise ValueError('Cannot infer the rule for key '
f'{key_indicator}, thus a specific rule '
'must be specified.')
self.rule = rule
self.key_indicator = key_indicator
if self.rule is not None:
self.is_better_than = self.rule_map[self.rule]
Mashiro
committed
def after_train_iter(self,
runner,
Mashiro
committed
data_batch: DATA_BATCH = None,
outputs=Optional[dict]) -> None:
"""Save the checkpoint and synchronize buffers after each iteration.
Args:
runner (Runner): The runner of the training process.
batch_idx (int): The index of the current batch in the train loop.
data_batch (Sequence[dict], optional): Data from dataloader.
Defaults to None.
outputs (dict, optional): Outputs from model. Defaults to None.
"""
if self.by_epoch:
return
# save checkpoint for following cases:
# 1. every ``self.interval`` iterations
# 2. reach the last iteration of training
if self.every_n_train_iters(runner, self.interval) or \
(self.save_last and
self.is_last_train_iter(runner)):
runner.logger.info(
f'Saving checkpoint at {runner.iter + 1} iterations')