Newer
Older
# 15 minutes to get started with MMEngine
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
In this tutorial, we'll take training a ResNet-50 model on CIFAR-10 dataset as an example. We will build a complete and configurable pipeline for both training and validation in only 80 lines of code with `MMEgnine`.
The whole process includes the following steps:
1. [Build a Model](#build-a-model)
2. [Build a Dataset and DataLoader](#build-a-dataset-and-dataloader)
3. [Build a Evaluation Metrics](#build-a-evaluation-metrics)
4. [Build a Runner and Run the Task](#build-a-runner-and-run-the-task)
## Build a Model
First, we need to build a **model**. In MMEngine, the model should inherit from `BaseModel`. Aside from parameters representing inputs from the dataset, its `forward` method needs to accept an extra argument called `mode`:
- for training, the value of `mode` is "loss," and the `forward` method should return a `dict` containing the key "loss".
- for validation, the value of `mode` is "predict", and the forward method should return results containing both predictions and labels.
```python
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
```
## Build a Dataset and DataLoader
Next, we need to create **Dataset** and **DataLoader** for training and validation.
For basic training and validation, we can simply use built-in datasets supported in TorchVision.
```python
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
val_dataloader = DataLoader(batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
```
## Build a Evaluation Metrics
To validate and test the model, we need to define a **Metric** called accuracy to evaluate the model. This metric needs inherit from `BaseMetric` and implements the `process` and `compute_metrics` methods where the `process` method accepts the output of the dataset and other outputs when `mode="predict"`. The output data at this scenario is a batch of data. After processing this batch of data, we save the information to `self.results` property.
`compute_metrics` accepts a `results` parameter. The input `results` of `compute_metrics` is all the information saved in `process` (In the case of a distributed environment, `results` are the information collected from all `process` in all the processes). Use these information to calculate and return a `dict` that holds the results of the evaluation metrics
```python
from mmengine.evaluator import BaseMetric
class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
# save the middle result of a batch to `self.results`
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})
def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
# return the dict containing the eval results
# the key is the name of the metric name
return dict(accuracy=100 * total_correct / total_size)
```
## Build a Runner and Run the Task
Now we can build a **Runner** with previously defined `Model`, `DataLoader`, and `Metrics`, and some other configs shown as follows:
```python
from torch.optim import SGD
from mmengine.runner import Runner
runner = Runner(
# the model used for training and validation.
# Needs to meet specific interface requirements
model=MMResNet50(),
# working directory which saves training logs and weight files
work_dir='./work_dir',
# train dataloader needs to meet the PyTorch data loader protocol
train_dataloader=train_dataloader,
# optimize wrapper for optimization with additional features like
# AMP, gradtient accumulation, etc
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
# trainging coinfs for specifying training epoches, verification intervals, etc
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
# validation dataloaer also needs to meet the PyTorch data loader protocol
val_dataloader=val_dataloader,
# validation configs for specifying additional parameters required for validation
val_cfg=dict(),
# validation evaluator. The default one is used here
val_evaluator=dict(type=Accuracy),
)
runner.train()
```
Finally, let's put all the codes above together into a complete script that uses the `MMEngine` executor for training and validation:
<a href="https://colab.research.google.com/github/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/get_started.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a>
```python
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import SGD
from torch.utils.data import DataLoader
from mmengine.evaluator import BaseMetric
from mmengine.model import BaseModel
from mmengine.runner import Runner
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})
def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
return dict(accuracy=100 * total_correct / total_size)
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
val_dataloader = DataLoader(batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
```
Training log would be similar to this:
```
2022/08/22 15:51:53 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]
CUDA available: True
numpy_random_seed: 1513128759
GPU 0: NVIDIA GeForce GTX 1660 SUPER
CUDA_HOME: /usr/local/cuda
...
2022/08/22 15:51:54 - mmengine - INFO - Checkpoints will be saved to /home/mazerun/work_dir by HardDiskBackend.
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][10/1563] lr: 1.0000e-03 eta: 0:18:23 time: 0.1414 data_time: 0.0077 memory: 392 loss: 5.3465
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][20/1563] lr: 1.0000e-03 eta: 0:11:29 time: 0.0354 data_time: 0.0077 memory: 392 loss: 2.7734
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][30/1563] lr: 1.0000e-03 eta: 0:09:10 time: 0.0352 data_time: 0.0076 memory: 392 loss: 2.7789
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][40/1563] lr: 1.0000e-03 eta: 0:08:00 time: 0.0353 data_time: 0.0073 memory: 392 loss: 2.5725
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][50/1563] lr: 1.0000e-03 eta: 0:07:17 time: 0.0347 data_time: 0.0073 memory: 392 loss: 2.7382
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][60/1563] lr: 1.0000e-03 eta: 0:06:49 time: 0.0347 data_time: 0.0072 memory: 392 loss: 2.5956
2022/08/22 15:51:58 - mmengine - INFO - Epoch(train) [1][70/1563] lr: 1.0000e-03 eta: 0:06:28 time: 0.0348 data_time: 0.0072 memory: 392 loss: 2.7351
...
2022/08/22 15:52:50 - mmengine - INFO - Saving checkpoint at 1 epochs
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][10/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 392
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][20/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 308
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][30/313] eta: 0:00:03 time: 0.0123 data_time: 0.0047 memory: 308
...
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000
```
In addition to these basic components, you can also use **executor** to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see [OptimWrapper](../tutorials/optim_wrapper.md)), configuring the learning rate decay curve (see [Metrics & Evaluator](../tutorials/evaluation.md)), and etc.